import gradio as gr from PIL import Image, ImageDraw, ImageFont from ultralytics import YOLO, RTDETR import spaces import os import cv2 import numpy as np import tempfile from huggingface_hub import hf_hub_download def get_model_path(model_name): """ Downloads a specified model from the 'atalaydenknalbant/budgerigar_models' Hugging Face repository and returns its local cached path. This helper function streamlines the process of fetching model weights from the Hugging Face Hub, ensuring the model is available locally for use. Args: model_name (str): The filename of the model to download (e.g., 'budgerigar_yolo11x.pt'). Returns: str: The file path to the locally downloaded model. """ model_cache_path = hf_hub_download( repo_id="atalaydenknalbant/budgerigar_models", filename=model_name ) return model_cache_path @spaces.GPU def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection): """ Performs budgerigar gender determination inference on an image or video using a selected YOLO or RTDETR model. This function handles both image and video inputs. For images, it loads the appropriate model and annotates the image. For videos, it processes each frame, performs detection, and then reconstructs an annotated video. Error handling for missing inputs is included, returning blank outputs with messages. Args: input_type (str): Specifies the input type, either "Image" or "Video". image (PIL.Image.Image or None): The input image if `input_type` is "Image". None otherwise. video (str or None): The path to the input video file if `input_type` is "Video". None otherwise. model_id (str): The identifier of the model to use (e.g., 'budgerigar_yolo11x.pt', 'budgerigar_rtdetr-x.pt'). conf_threshold (float): The confidence threshold for filtering detections. Detections with confidence below this value are discarded. iou_threshold (float): The Intersection over Union (IoU) threshold for Non-Maximum Suppression (NMS) to remove overlapping detections. max_detection (int): The maximum number of detections to return and display. Returns: tuple: A tuple containing two elements: - PIL.Image.Image or None: The annotated image if `input_type` was "Image", otherwise None. - str or None: The path to the annotated video file if `input_type` was "Video", otherwise None. """ model_path = get_model_path(model_id) model_type = RTDETR if 'rtdetr' in model_id.lower() else YOLO model = model_type(model_path) if input_type == "Image": if image is None: width, height = 640, 480 blank_image = Image.new("RGB", (width, height), color="white") draw = ImageDraw.Draw(blank_image) message = "No image provided" font = ImageFont.load_default(size=40) bbox = draw.textbbox((0, 0), message, font=font) text_width = bbox[2] - bbox[0] text_height = bbox[3] - bbox[1] text_x = (width - text_width) / 2 text_y = (height - text_height) / 2 draw.text((text_x, text_y), message, fill="black", font=font) return blank_image, None results = model.predict( source=image, conf=conf_threshold, iou=iou_threshold, imgsz=640, max_det=max_detection, show_labels=True, show_conf=True, ) for r in results: image_array = r.plot() annotated_image = Image.fromarray(image_array[..., ::-1]) return annotated_image, None elif input_type == "Video": if video is None: width, height = 640, 480 blank_image = Image.new("RGB", (width, height), color="white") draw = ImageDraw.Draw(blank_image) message = "No video provided" font = ImageFont.load_default(size=40) bbox = draw.textbbox((0, 0), message, font=font) text_width = bbox[2] - bbox[0] text_height = bbox[3] - bbox[1] text_x = (width - text_width) / 2 text_y = (height - text_height) / 2 draw.text((text_x, text_y), message, fill="black", font=font) temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name fourcc = cv2.VideoWriter_fourcc(*"mp4v") out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height)) frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR) out.write(frame) out.release() return None, temp_video_file cap = cv2.VideoCapture(video) fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25 frames = [] while True: ret, frame = cap.read() if not ret: break pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) results = model.predict( source=pil_frame, conf=conf_threshold, iou=iou_threshold, imgsz=640, max_det=max_detection, show_labels=True, show_conf=True, ) for r in results: annotated_frame_array = r.plot() annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB) frames.append(annotated_frame) cap.release() if not frames: return None, None height_out, width_out, _ = frames[0].shape temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name fourcc = cv2.VideoWriter_fourcc(*"mp4v") out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out)) for f in frames: f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR) out.write(f_bgr) out.release() return None, temp_video_file return None, None def update_visibility(input_type): """ Adjusts the visibility of Gradio components based on the selected input type. This function dynamically shows or hides the image and video input/output components in the Gradio interface to ensure only relevant fields are visible. Args: input_type (str): The selected input type, either "Image" or "Video". Returns: tuple: A tuple of `gr.update` objects for the visibility of: (image input, video input, image output, video output). """ if input_type == "Image": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection): """ Wrapper function for `yolo_inference` specifically for Gradio examples that use images. This function simplifies the `yolo_inference` call for the `gr.Examples` component, ensuring only image-based inference is performed for predefined examples. Args: image (PIL.Image.Image): The input image for the example. model_id (str): The identifier of the YOLO model to use. conf_threshold (float): The confidence threshold. iou_threshold (float): The IoU threshold. max_detection (int): The maximum number of detections. Returns: PIL.Image.Image or None: The annotated image. Returns None if no image is processed. """ annotated_image, _ = yolo_inference( input_type="Image", image=image, video=None, model_id=model_id, conf_threshold=conf_threshold, iou_threshold=iou_threshold, max_detection=max_detection ) return annotated_image with gr.Blocks(title="Budgerigar Gender Determination") as app: gr.Markdown("# Budgerigar Gender Determination") gr.Markdown( "Pretrained object detection models for determining budgerigar gender based on cere color variations. " "Upload image(s) or video(s) for inference. For more details, refer to the paper: " '' '"Advanced Computer Vision Techniques for Reliable Gender Determination in Budgerigars (Melopsittacus Undulatus)"' "

" "To help us improve, please report any incorrect gender determinations by sending the original image and details to -> Email ." "Your feedback is important for retraining and improving the model." ) with gr.Row(): with gr.Column(): image = gr.Image(type="pil", label="Image Input", visible=True) video = gr.Video(label="Video Input", visible=False) input_type = gr.Radio( choices=["Image", "Video"], value="Image", label="Input Type", ) model_id = gr.Radio( choices=[ 'budgerigar_yolo11x.pt', 'budgerigar_yolov9e.pt', 'budgerigar_yolo11l.pt', 'budgerigar_yolo11m.pt', 'budgerigar_yolo11s.pt', 'budgerigar_yolo11n.pt', 'budgerigar_rtdetr-x.pt' ], label="Model Name", value="budgerigar_yolo11x.pt", ) conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold") iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold") max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection") infer_button = gr.Button("Detect Objects") with gr.Column(): output_image = gr.Image(type="pil", label="Annotated Image", visible=True) output_video = gr.Video(label="Annotated Video", visible=False) gr.DeepLinkButton() input_type.change( fn=update_visibility, inputs=input_type, outputs=[image, video, output_image, output_video], ) infer_button.click( fn=yolo_inference, inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection], outputs=[output_image, output_video], ) gr.Examples( examples=[ ["both.jpg", "budgerigar_rtdetr-x.pt", 0.25, 0.45, 300], ["Male.png", "budgerigar_yolov9e.pt", 0.25, 0.45, 300], ["Female.png", "budgerigar_yolo11x.pt", 0.25, 0.45, 300], ], fn=yolo_inference_for_examples, inputs=[image, model_id, conf_threshold, iou_threshold, max_detection], outputs=[output_image], label="Examples (Images)", ) app.launch(mcp_server=True)