Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,27 @@ import spaces
|
|
2 |
import supervision as sv
|
3 |
import PIL.Image as Image
|
4 |
from ultralytics import YOLO
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
import gradio as gr
|
7 |
|
8 |
global repo_id
|
9 |
|
10 |
repo_id = "atalaydenknalbant/asl-yolo-models"
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
# Download the selected model
|
19 |
hf_hub_download(repo_id, filename=model_id, local_dir=f"./")
|
20 |
-
return
|
21 |
|
22 |
box_annotator = sv.BoxAnnotator()
|
23 |
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
|
@@ -26,8 +31,8 @@ category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H',
|
|
26 |
|
27 |
@spaces.GPU
|
28 |
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
|
29 |
-
# Download models
|
30 |
-
|
31 |
|
32 |
model = YOLO(model_path)
|
33 |
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
|
@@ -42,9 +47,6 @@ def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection
|
|
42 |
return annotated_image
|
43 |
|
44 |
def app():
|
45 |
-
# Fetch the model filenames directly in the app
|
46 |
-
model_filenames, _ = download_models(repo_id, "")
|
47 |
-
|
48 |
with gr.Blocks():
|
49 |
with gr.Row():
|
50 |
with gr.Column():
|
@@ -142,4 +144,4 @@ with gradio_app:
|
|
142 |
with gr.Column():
|
143 |
app()
|
144 |
|
145 |
-
gradio_app.launch(
|
|
|
2 |
import supervision as sv
|
3 |
import PIL.Image as Image
|
4 |
from ultralytics import YOLO
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
import gradio as gr
|
7 |
|
8 |
global repo_id
|
9 |
|
10 |
repo_id = "atalaydenknalbant/asl-yolo-models"
|
11 |
|
12 |
+
# Model filenames directly provided, since they are known
|
13 |
+
model_filenames = [
|
14 |
+
"yolov10s.pt",
|
15 |
+
"yolov10x.pt",
|
16 |
+
"yolov8s.pt",
|
17 |
+
"yolov8x.pt",
|
18 |
+
"yolov9e.pt",
|
19 |
+
"yolov9s.pt"
|
20 |
+
]
|
21 |
+
|
22 |
+
def download_models(repo_id, model_id):
|
23 |
# Download the selected model
|
24 |
hf_hub_download(repo_id, filename=model_id, local_dir=f"./")
|
25 |
+
return f"./{model_id}"
|
26 |
|
27 |
box_annotator = sv.BoxAnnotator()
|
28 |
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
|
|
|
31 |
|
32 |
@spaces.GPU
|
33 |
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
|
34 |
+
# Download models
|
35 |
+
model_path = download_models(repo_id, model_id)
|
36 |
|
37 |
model = YOLO(model_path)
|
38 |
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
|
|
|
47 |
return annotated_image
|
48 |
|
49 |
def app():
|
|
|
|
|
|
|
50 |
with gr.Blocks():
|
51 |
with gr.Row():
|
52 |
with gr.Column():
|
|
|
144 |
with gr.Column():
|
145 |
app()
|
146 |
|
147 |
+
gradio_app.launch()
|