Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import PIL.Image as Image
|
|
6 |
import PIL.Image as Image
|
7 |
from ultralytics import YOLO
|
8 |
from huggingface_hub import hf_hub_download, HfApi
|
9 |
-
|
10 |
global repo_id
|
11 |
|
12 |
def download_models(model_id):
|
@@ -19,6 +19,9 @@ def get_model_filenames(repo_id, file_extension = ".pt"):
|
|
19 |
model_filenames = [file for file in files if file.endswith(file_extension)]
|
20 |
return model_filenames
|
21 |
|
|
|
|
|
|
|
22 |
repo_id = "atalaydenknalbant/asl-yolo-models"
|
23 |
model_filenames = get_model_filenames(repo_id)
|
24 |
print("Model filenames:", model_filenames)
|
@@ -37,10 +40,8 @@ def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection
|
|
37 |
model = YOLO(model_path)
|
38 |
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
|
39 |
|
40 |
-
# Get the detections and convert them to the supervision Detections format
|
41 |
detections = sv.Detections.from_ultralytics(results)
|
42 |
|
43 |
-
# Prepare the labels
|
44 |
labels = [
|
45 |
f"{category_dict[class_id]} {confidence:.2f}"
|
46 |
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
|
|
6 |
import PIL.Image as Image
|
7 |
from ultralytics import YOLO
|
8 |
from huggingface_hub import hf_hub_download, HfApi
|
9 |
+
import random
|
10 |
global repo_id
|
11 |
|
12 |
def download_models(model_id):
|
|
|
19 |
model_filenames = [file for file in files if file.endswith(file_extension)]
|
20 |
return model_filenames
|
21 |
|
22 |
+
def random_color():
|
23 |
+
return tuple(random.randint(0, 255) for _ in range(3))
|
24 |
+
|
25 |
repo_id = "atalaydenknalbant/asl-yolo-models"
|
26 |
model_filenames = get_model_filenames(repo_id)
|
27 |
print("Model filenames:", model_filenames)
|
|
|
40 |
model = YOLO(model_path)
|
41 |
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
|
42 |
|
|
|
43 |
detections = sv.Detections.from_ultralytics(results)
|
44 |
|
|
|
45 |
labels = [
|
46 |
f"{category_dict[class_id]} {confidence:.2f}"
|
47 |
for class_id, confidence in zip(detections.class_id, detections.confidence)
|