atalaydenknalbant commited on
Commit
cbac7dc
·
verified ·
1 Parent(s): 656b7de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -6,7 +6,7 @@ import PIL.Image as Image
6
  import PIL.Image as Image
7
  from ultralytics import YOLO
8
  from huggingface_hub import hf_hub_download, HfApi
9
-
10
  global repo_id
11
 
12
  def download_models(model_id):
@@ -19,6 +19,9 @@ def get_model_filenames(repo_id, file_extension = ".pt"):
19
  model_filenames = [file for file in files if file.endswith(file_extension)]
20
  return model_filenames
21
 
 
 
 
22
  repo_id = "atalaydenknalbant/asl-yolo-models"
23
  model_filenames = get_model_filenames(repo_id)
24
  print("Model filenames:", model_filenames)
@@ -37,10 +40,8 @@ def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection
37
  model = YOLO(model_path)
38
  results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
39
 
40
- # Get the detections and convert them to the supervision Detections format
41
  detections = sv.Detections.from_ultralytics(results)
42
 
43
- # Prepare the labels
44
  labels = [
45
  f"{category_dict[class_id]} {confidence:.2f}"
46
  for class_id, confidence in zip(detections.class_id, detections.confidence)
 
6
  import PIL.Image as Image
7
  from ultralytics import YOLO
8
  from huggingface_hub import hf_hub_download, HfApi
9
+ import random
10
  global repo_id
11
 
12
  def download_models(model_id):
 
19
  model_filenames = [file for file in files if file.endswith(file_extension)]
20
  return model_filenames
21
 
22
+ def random_color():
23
+ return tuple(random.randint(0, 255) for _ in range(3))
24
+
25
  repo_id = "atalaydenknalbant/asl-yolo-models"
26
  model_filenames = get_model_filenames(repo_id)
27
  print("Model filenames:", model_filenames)
 
40
  model = YOLO(model_path)
41
  results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
42
 
 
43
  detections = sv.Detections.from_ultralytics(results)
44
 
 
45
  labels = [
46
  f"{category_dict[class_id]} {confidence:.2f}"
47
  for class_id, confidence in zip(detections.class_id, detections.confidence)