Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import supervision as sv
|
4 |
import PIL.Image as Image
|
5 |
from ultralytics import YOLO, YOLOv10
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
-
|
9 |
def download_models(model_id):
|
10 |
hf_hub_download("atalaydenknalbant/asl-models", filename=f"{model_id}", local_dir=f"./")
|
11 |
return f"./{model_id}"
|
12 |
|
13 |
-
|
14 |
-
|
15 |
box_annotator = sv.BoxAnnotator()
|
16 |
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
|
17 |
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
|
18 |
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
@spaces.GPU(duration=200)
|
24 |
def yolo_inference(image, model_id, conf_threshold, iou_threshold):
|
25 |
model_path = download_models(model_id)
|
26 |
if model_id[:7] == 'yolov10':
|
@@ -42,7 +34,7 @@ def app():
|
|
42 |
with gr.Blocks():
|
43 |
with gr.Row():
|
44 |
with gr.Column():
|
45 |
-
image = gr.Image(type="pil", label="Image")
|
46 |
|
47 |
model_id = gr.Dropdown(
|
48 |
label="Model",
|
@@ -71,7 +63,7 @@ def app():
|
|
71 |
yolov10_infer = gr.Button(value="Detect Objects")
|
72 |
|
73 |
with gr.Column():
|
74 |
-
output_image = gr.Image(type="pil", label="Annotated Image")
|
75 |
|
76 |
yolov10_infer.click(
|
77 |
fn=yolo_inference,
|
@@ -116,4 +108,4 @@ with gradio_app:
|
|
116 |
with gr.Column():
|
117 |
app()
|
118 |
|
119 |
-
gradio_app.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import supervision as sv
|
3 |
import PIL.Image as Image
|
4 |
from ultralytics import YOLO, YOLOv10
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
|
|
|
7 |
def download_models(model_id):
|
8 |
hf_hub_download("atalaydenknalbant/asl-models", filename=f"{model_id}", local_dir=f"./")
|
9 |
return f"./{model_id}"
|
10 |
|
|
|
|
|
11 |
box_annotator = sv.BoxAnnotator()
|
12 |
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
|
13 |
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
|
14 |
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
|
15 |
|
|
|
|
|
|
|
|
|
16 |
def yolo_inference(image, model_id, conf_threshold, iou_threshold):
|
17 |
model_path = download_models(model_id)
|
18 |
if model_id[:7] == 'yolov10':
|
|
|
34 |
with gr.Blocks():
|
35 |
with gr.Row():
|
36 |
with gr.Column():
|
37 |
+
image = gr.Image(type="pil", label="Image", tool="editor")
|
38 |
|
39 |
model_id = gr.Dropdown(
|
40 |
label="Model",
|
|
|
63 |
yolov10_infer = gr.Button(value="Detect Objects")
|
64 |
|
65 |
with gr.Column():
|
66 |
+
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
|
67 |
|
68 |
yolov10_infer.click(
|
69 |
fn=yolo_inference,
|
|
|
108 |
with gr.Column():
|
109 |
app()
|
110 |
|
111 |
+
gradio_app.launch(debug=True)
|