atalaydenknalbant commited on
Commit
3572f5e
·
verified ·
1 Parent(s): 995b4bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -17
app.py CHANGED
@@ -1,12 +1,9 @@
1
- import gradio as gr
2
  import spaces
3
  import supervision as sv
4
- from PIL import ImageDraw
5
- import PIL.Image as Image
6
  import PIL.Image as Image
7
  from ultralytics import YOLO
8
  from huggingface_hub import hf_hub_download, HfApi
9
- import random
10
  global repo_id
11
 
12
  def download_models(model_id):
@@ -19,9 +16,6 @@ def get_model_filenames(repo_id, file_extension = ".pt"):
19
  model_filenames = [file for file in files if file.endswith(file_extension)]
20
  return model_filenames
21
 
22
- def random_color():
23
- return tuple(random.randint(0, 255) for _ in range(3))
24
-
25
  repo_id = "atalaydenknalbant/asl-yolo-models"
26
  model_filenames = get_model_filenames(repo_id)
27
  print("Model filenames:", model_filenames)
@@ -39,22 +33,13 @@ def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection
39
  model_path = download_models(model_id)
40
  model = YOLO(model_path)
41
  results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
42
-
43
  detections = sv.Detections.from_ultralytics(results)
44
 
45
  labels = [
46
  f"{category_dict[class_id]} {confidence:.2f}"
47
  for class_id, confidence in zip(detections.class_id, detections.confidence)
48
  ]
49
-
50
-
51
- annotated_image = image.copy()
52
- draw = ImageDraw.Draw(annotated_image)
53
-
54
- for label, (x1, y1, x2, y2) in zip(labels, detections.xyxy):
55
- color = random_color()
56
- draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
57
- draw.text((x1, y1), label, fill=color)
58
 
59
  return annotated_image
60
 
 
 
1
  import spaces
2
  import supervision as sv
 
 
3
  import PIL.Image as Image
4
  from ultralytics import YOLO
5
  from huggingface_hub import hf_hub_download, HfApi
6
+
7
  global repo_id
8
 
9
  def download_models(model_id):
 
16
  model_filenames = [file for file in files if file.endswith(file_extension)]
17
  return model_filenames
18
 
 
 
 
19
  repo_id = "atalaydenknalbant/asl-yolo-models"
20
  model_filenames = get_model_filenames(repo_id)
21
  print("Model filenames:", model_filenames)
 
33
  model_path = download_models(model_id)
34
  model = YOLO(model_path)
35
  results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
 
36
  detections = sv.Detections.from_ultralytics(results)
37
 
38
  labels = [
39
  f"{category_dict[class_id]} {confidence:.2f}"
40
  for class_id, confidence in zip(detections.class_id, detections.confidence)
41
  ]
42
+ annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
 
 
 
 
 
 
 
 
43
 
44
  return annotated_image
45