Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,353 Bytes
cb1fbea c030bd6 1c082c8 636a182 0472215 cb1fbea 1c082c8 b29d408 1c082c8 cb1fbea 55d4b6f cb1fbea 6f78ed1 0472215 cb1fbea 64a71dd cb1fbea f075fbc cb1fbea 09ecbb9 cb1fbea 09ecbb9 cb1fbea f075fbc cb1fbea f075fbc cb1fbea f075fbc cb1fbea f34ddb6 cb1fbea 09ecbb9 cb1fbea f34ddb6 cb1fbea 09ecbb9 cb1fbea f34ddb6 cb1fbea 09ecbb9 cb1fbea f34ddb6 cb1fbea f075fbc cb1fbea 36e4f2e 99a64f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import spaces
import supervision as sv
import PIL.Image as Image
from ultralytics import YOLO
from huggingface_hub import hf_hub_download, HfApi
import gradio as gr
import torch
global repo_id
repo_id = "atalaydenknalbant/asl-yolo-models"
def get_model_filenames(repo_id):
api = HfApi()
files = api.list_repo_files(repo_id)
model_filenames = [file for file in files if file.endswith('.pt')]
return model_filenames
model_filenames = get_model_filenames(repo_id)
def download_models(repo_id, model_id):
# Download the selected model
hf_hub_download(repo_id, filename=model_id, local_dir=f"./")
return f"./{model_id}"
box_annotator = sv.BoxAnnotator()
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
@spaces.GPU
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
# Download models
model_path = download_models(repo_id, model_id)
model = YOLO(model_path)
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", interactive=True)
model_id = gr.Dropdown(
label="Model",
choices=model_filenames,
value=model_filenames[0] if model_filenames else "",
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.7,
)
max_detection = gr.Slider(
label="Max Detection",
minimum=1,
step=1,
value=1,
)
yolov_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
yolov_infer.click(
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
)
gr.Examples(
examples=[
[
"b.jpg",
"yolo11x.pt",
0.45,
0.7,
1,
],
[
"a.jpg",
"yolo11s.pt",
0.45,
0.7,
1,
],
[
"y.jpg",
"yolo11m.pt",
0.45,
0.7,
1,
],
],
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
cache_examples=True,
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLO Powered ASL(American Sign Language) Letter Detector PSA: It can't detect J or Z
</h1>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch()
|