Spaces:
Runtime error
Runtime error
fixed peft in app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,25 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
-
from peft import PeftModel
|
| 5 |
|
| 6 |
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 15 |
-
|
| 16 |
add_bos_token=True
|
| 17 |
)
|
| 18 |
|
| 19 |
|
| 20 |
-
base_model_id = "mistralai/Mistral-7B-v0.1"
|
| 21 |
-
bnb_config = BitsAndBytesConfig(
|
| 22 |
-
load_in_4bit=True,
|
| 23 |
-
bnb_4bit_use_double_quant=True,
|
| 24 |
-
bnb_4bit_quant_type="nf4",
|
| 25 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
-
base_model_id,
|
| 30 |
-
quantization_config=bnb_config,
|
| 31 |
-
device_map="auto",
|
| 32 |
-
trust_remote_code=True
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
model = PeftModel.from_pretrained(base_model, ft_model_id).to(device)
|
| 36 |
-
model.eval()
|
| 37 |
-
|
| 38 |
-
|
| 39 |
def uwaterloo_output(post_title, post_text):
|
| 40 |
prompt = f"""
|
| 41 |
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
|
@@ -67,25 +51,3 @@ iface = gr.Interface(
|
|
| 67 |
|
| 68 |
iface.launch()
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
# base_model_id = "mistralai/Mistral-7B-v0.1"
|
| 74 |
-
# bnb_config = BitsAndBytesConfig(
|
| 75 |
-
# load_in_4bit=True,
|
| 76 |
-
# bnb_4bit_use_double_quant=True,
|
| 77 |
-
# bnb_4bit_quant_type="nf4",
|
| 78 |
-
# bnb_4bit_compute_dtype=torch.bfloat16
|
| 79 |
-
# )
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
# base_model = AutoModelForCausalLM.from_pretrained(
|
| 83 |
-
# base_model_id, # Mistral, same as before
|
| 84 |
-
# quantization_config=bnb_config, # Same quantization config as before
|
| 85 |
-
# device_map="auto",
|
| 86 |
-
# trust_remote_code=True,
|
| 87 |
-
# use_auth_token=True
|
| 88 |
-
# )
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
# ft_model = PeftModel.from_pretrained(base_model, "mistral-mistraloo/checkpoint-500")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
+
from peft import PeftModel, PeftConfig
|
| 5 |
|
| 6 |
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
|
| 9 |
|
| 10 |
+
peft_model_id = "asusevski/mistraloo-sft"
|
| 11 |
+
peft_config = PeftConfig.from_pretrained(peft_model_id)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(peft_config.base_model_name_or_path)
|
| 13 |
+
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
|
| 14 |
+
model.eval()
|
| 15 |
|
| 16 |
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 18 |
+
peft_config.base_model_name_or_path,
|
| 19 |
add_bos_token=True
|
| 20 |
)
|
| 21 |
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def uwaterloo_output(post_title, post_text):
|
| 24 |
prompt = f"""
|
| 25 |
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
|
|
|
| 51 |
|
| 52 |
iface.launch()
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|