aspnet commited on
Commit
55c4223
·
verified ·
1 Parent(s): 34b40de

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +208 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, send_from_directory, render_template
2
+ from flask_cors import CORS
3
+ from ultralytics import YOLO
4
+ import gradio as gr
5
+ from threading import Thread
6
+ import os
7
+ import uuid
8
+ import logging
9
+ from PIL import Image
10
+
11
+ # 配置日志记录
12
+ logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S')
13
+
14
+ # 创建 Flask 应用
15
+ app = Flask(__name__, static_folder='static')
16
+ CORS(app)
17
+
18
+ # 定义模型路径
19
+ models = {
20
+ '追踪': 'models/yolov8n.pt',
21
+ '检测': 'models/danzhu.pt',
22
+ '分类': 'models/yolov8n-cls.pt',
23
+ '姿势': 'models/yolov8n-pose.pt',
24
+ '分割': 'models/yolov8n-seg.pt'
25
+ }
26
+
27
+ model_instances = {}
28
+
29
+ def load_model(model_path):
30
+ """加载模型"""
31
+ try:
32
+ logging.info(f"正在从 {model_path} 加载模型...")
33
+ model = YOLO(model_path)
34
+ logging.info(f"模型从 {model_path} 成功加载")
35
+ return model
36
+ except Exception as e:
37
+ logging.error(f"从 {model_path} 加载模型失败: {e}")
38
+ return None
39
+
40
+ def convert_image_format(img_path, target_format='JPEG'):
41
+ """转换图像格式"""
42
+ try:
43
+ with Image.open(img_path) as img:
44
+ if img.mode != 'RGB':
45
+ img = img.convert('RGB')
46
+ base_name, _ = os.path.splitext(img_path)
47
+ target_path = f"{base_name}.{target_format.lower()}"
48
+ img.save(target_path, format=target_format)
49
+ logging.info(f"图像格式成功转换为 {target_format},保存到 {target_path}")
50
+ return target_path
51
+ except Exception as e:
52
+ logging.error(f"图像格式转换失败: {e}")
53
+ raise
54
+
55
+ def predict(model_name, img_path):
56
+ """进行预测"""
57
+ try:
58
+ if model_name not in models:
59
+ logging.error("选择的模型无效。")
60
+ return "选择的模型无效。"
61
+
62
+ model_path = models[model_name]
63
+ if model_name not in model_instances:
64
+ model_instances[model_name] = load_model(model_path)
65
+ model = model_instances[model_name]
66
+
67
+ if model is None:
68
+ logging.error("由于连接错误,模型未加载。")
69
+ return "由于连接错误,模型未加载。"
70
+
71
+ unique_name = str(uuid.uuid4())
72
+ save_dir = './runs/detect'
73
+ os.makedirs(save_dir, exist_ok=True)
74
+ logging.info(f"保存目录: {save_dir}")
75
+
76
+ # 转换图像格式
77
+ img_path_converted = convert_image_format(img_path, 'JPEG')
78
+ img_path_converted = os.path.normpath(img_path_converted)
79
+ logging.info(f"对 {img_path_converted} 进行预测...")
80
+
81
+ results = model.predict(img_path_converted, save=True, project=save_dir, name=unique_name, device='cpu')
82
+ logging.info(f"预测结果: {results}")
83
+
84
+ result_dir = os.path.join(save_dir, unique_name)
85
+ result_dir = os.path.normpath(result_dir)
86
+ logging.info(f"结果目录: {result_dir}")
87
+
88
+ if not os.path.exists(result_dir):
89
+ logging.error(f"结果目录 {result_dir} 不存在")
90
+ return "未找到预测结果。"
91
+
92
+ # 查找预测结果文件
93
+ predicted_img_path = None
94
+ for file in os.listdir(result_dir):
95
+ if file.lower().endswith(('.jpeg', '.jpg')):
96
+ predicted_img_path = os.path.join(result_dir, file)
97
+ break
98
+
99
+ if predicted_img_path:
100
+ logging.info(f"找到预测图像: {predicted_img_path}")
101
+ return predicted_img_path
102
+ else:
103
+ logging.error(f"在 {result_dir} 中未找到预测图像")
104
+ return "未找到预测结果。"
105
+ except Exception as e:
106
+ logging.error(f"预测过程中出错: {e}")
107
+ return f"预测过程中出错: {e}"
108
+
109
+ # 定义 Gradio 界面
110
+ iface = gr.Interface(
111
+ fn=predict,
112
+ inputs=[
113
+ gr.Dropdown(choices=list(models.keys()), label="选择模型"),
114
+ gr.Image(type="filepath", label="输入图像")
115
+ ],
116
+ outputs=gr.Image(type="filepath", label="输出图像")
117
+ )
118
+
119
+ @app.route('/')
120
+ def home():
121
+ """主页"""
122
+ return render_template('index.html')
123
+
124
+ @app.route('/request', methods=['POST'])
125
+ def handle_request():
126
+ """处理请求"""
127
+ try:
128
+ selected_model = request.form.get('model')
129
+ if selected_model not in models:
130
+ logging.error("选择的模型无效。")
131
+ return jsonify({'error': '选择的模型无效。'}), 400
132
+
133
+ model_path = models[selected_model]
134
+ if selected_model not in model_instances:
135
+ model_instances[selected_model] = load_model(model_path)
136
+ model = model_instances[selected_model]
137
+
138
+ if model is None:
139
+ logging.error("由于连接错误,模型未加载。")
140
+ return jsonify({'error': '由于连接错误,模型未��载。'}), 500
141
+
142
+ img = request.files.get('img')
143
+ if img is None:
144
+ logging.error("未提供图像。")
145
+ return jsonify({'error': '未提供图像。'}), 400
146
+
147
+ img_name = str(uuid.uuid4()) + '.jpg'
148
+ img_path = os.path.join('./img', img_name)
149
+ os.makedirs(os.path.dirname(img_path), exist_ok=True)
150
+ img.save(img_path)
151
+ logging.info(f"图像已保存到: {img_path}")
152
+
153
+ save_dir = './runs/detect'
154
+ os.makedirs(save_dir, exist_ok=True)
155
+ unique_name = str(uuid.uuid4())
156
+ logging.info(f"对 {img_path} 进行预测...")
157
+ results = model.predict(img_path, save=True, project=save_dir, name=unique_name, device='cpu')
158
+ logging.info(f"预测结果: {results}")
159
+
160
+ result_dir = os.path.join(save_dir, unique_name)
161
+
162
+ # 查找预测结果文件
163
+ predicted_img_path = None
164
+ for file in os.listdir(result_dir):
165
+ if file.endswith('.jpeg') or file.endswith('.jpg'):
166
+ predicted_img_path = os.path.join(result_dir, file)
167
+ break
168
+
169
+ if predicted_img_path:
170
+ img_url = f'/get/{unique_name}/{os.path.basename(predicted_img_path)}'
171
+ return jsonify({'message': '预测成功!', 'img_path': img_url})
172
+ else:
173
+ saved_files = os.listdir(result_dir)
174
+ logging.error(f"保存目录中包含文件: {saved_files}")
175
+ return jsonify({'error': '未找到预测结果。'}), 500
176
+ except Exception as e:
177
+ logging.error(f"处理请求时出错: {e}")
178
+ return jsonify({'error': f'处理过程中发生错误: {e}'}), 500
179
+
180
+ @app.route('/get/<unique_name>/<filename>')
181
+ def get_image(unique_name, filename):
182
+ """获取图像"""
183
+ try:
184
+ return send_from_directory(os.path.join('runs/detect', unique_name), filename)
185
+ except Exception as e:
186
+ logging.error(f"提供文件时出错: {e}")
187
+ return jsonify({'error': '文件未找到。'}), 404
188
+
189
+ def run_gradio():
190
+ """运行 Gradio 界面"""
191
+ logging.info("启动 Gradio 界面...")
192
+ iface.launch(share=True) # 设置 share=True 以便公开访问
193
+
194
+ def run_flask():
195
+ """运行 Flask 应用"""
196
+ logging.info("启动 Flask 应用...")
197
+ app.run(host="0.0.0.0", port=5000)
198
+
199
+ if __name__ == '__main__':
200
+ # 启动 Flask 和 Gradio 线程
201
+ gradio_thread = Thread(target=run_gradio)
202
+ flask_thread = Thread(target=run_flask)
203
+
204
+ gradio_thread.start()
205
+ flask_thread.start()
206
+
207
+ gradio_thread.join()
208
+ flask_thread.join()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ Flask-Cors==3.0.10
2
+ ultralytics
3
+ Pillow==8.4.0
4
+ Flask==2.1.0
5
+ Werkzeug==2.0.3
6
+ gradio==3.27.0
7
+ httpx==0.24.0
8
+ httpcore==0.17.0