File size: 9,813 Bytes
95b880a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 55,
"id": "23e98a8a-7128-4f35-ba1c-ff514ed462e0",
"metadata": {},
"outputs": [],
"source": [
"#Install Dependencies\n",
"#!pip3 install torch torchvision torchaudio\n",
"#!pip install transformers ipywidgets gradio --upgrade\n",
"#!pip install --upgrade gradio\n",
"#!pip install nltk\n",
"#!pip install jiwer\n",
"#!pip install sentencepiece\n",
"#!pip install sacremoses\n",
"#!pip install soundfile"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "29275fa9-1b88-4e37-a278-7118bfca860a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"##translation_pipeline = pipeline('translation_en_to_fr')\n",
"##Evaluation Metric = BLEU score\n",
"##Exp1\n",
"#model_name = \"Davlan/byt5-base-eng-yor-mt\"\n",
"##Exp2\n",
"#model_name = \"Davlan/m2m100_418M-eng-yor-mt\" \n",
"##Exp3\n",
"#model_name = \"Davlan/mbart50-large-eng-yor-mt\"\n",
"##Exp4\n",
"#model_name = \"Davlan/mt5_base_eng_yor_mt\"\n",
"##Exp5\n",
"#model_name = \"omoekan/opus-tatoeba-eng-yor\"\n",
"##Exp6\n",
"#model_name = \"masakhane/afrimt5_en_yor_news\"\n",
"##Exp7\n",
"#model_name = \"masakhane/afrimbart_en_yor_news\"\n",
"##Exp8\n",
"#model_name = \"masakhane/afribyt5_en_yor_news\"\n",
"##Exp9\n",
"#model_name = \"masakhane/byt5_en_yor_news\"\n",
"##Exp10\n",
"#model_name = \"masakhane/mt5_en_yor_news\"\n",
"#translation_pipeline = pipeline('translation_en_to_yo', model = model_name, max_length=50)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "1ea4a2eb-6cbf-497a-a080-2db3dd64be36",
"metadata": {},
"outputs": [],
"source": [
"#results = translation_pipeline('My Name is Ayo, I love books')\n",
"#results[0]['translation_text']"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "f92487b5-158a-47ef-ab12-a361ea8d0a48",
"metadata": {},
"outputs": [],
"source": [
"#results = translation_pipeline('The wages of sin is death')\n",
"#results[0]['translation_text']"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "69d64db9-b083-46ae-80ce-9616ba99183d",
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"import nltk\n",
"import jiwer\n",
"from nltk.translate.bleu_score import corpus_bleu\n",
"from transformers import VitsModel, AutoTokenizer\n",
"import torch\n",
"import soundfile as sf\n",
"\n",
"\n",
"WerScore = 0\n",
"bleuScore = 0\n",
"def translate_transformers(modelName, sourceLangText):\n",
" #results = translation_pipeline(input_text)\n",
" translation_pipeline = pipeline('translation_en_to_yo', model = modelName, max_length=500)\n",
" translated_text = translation_pipeline(sourceLangText) #translator(text)[0][\"translation_text\"]\n",
" translated_text_target = translated_text[0]['translation_text']\n",
" hypothesis_translations = \"My name is Joy, I love reading\"\n",
" \n",
" #TTS for the translated_text_target\n",
" #TTS Exp1\n",
" ttsModel = VitsModel.from_pretrained(\"facebook/mms-tts-yor\")\n",
" tokenizer = AutoTokenizer.from_pretrained(\"facebook/mms-tts-yor\")\n",
" ttsInputs = tokenizer(translated_text_target, return_tensors=\"pt\")\n",
" \n",
" with torch.no_grad():\n",
" ttsOutput = ttsModel(**ttsInputs).waveform\n",
" #onvert the tensor to a numpy array\n",
" ttsWaveform = ttsOutput.numpy()[0] \n",
" #Save the waveform to an audio file\n",
" #sf.write('output.wav', waveform, 22050)\n",
" sf.write('ttsOutput.wav', ttsWaveform, 16000)\n",
" \n",
" #Calculate WerScore\n",
" WerScore = jiwer.wer(translated_text_target, hypothesis_translations)\n",
" #bleuScore = corpus_bleu(translated_text_target,hypothesis_translations)\n",
" \n",
" return translated_text_target,WerScore,'ttsOutput.wav'"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "5d9ed5a2-0d28-4078-923d-c8c27196292a",
"metadata": {},
"outputs": [],
"source": [
"#text1 = \"Oruko mi ni Ayo, mo feran iwe kika gan\"\n",
"#text2 = \"Agbaninímọ̀ràn kan lórí ọ̀ràn radiation and Clinical Oncologist, tórúkọ rẹ̀ ń jẹ́ Temitope Olatunji-Agunbiade ti kìlọ̀ fáwọn obìnrin pé kí wọ́n má ṣe lo oògùn máàjóyúndúró tàbí kí wọ́n lo oògùn máàjóyúndúró, ó sọ pé ìwádìí ti fi hàn pé lílò tí wọ́n ń lò ó ń mú kí ewu àrùn jẹjẹrẹ ọmú pọ̀ sí i.\"\n",
"\n",
"#with torch.no_grad():\n",
" #output = ttsModel(**inputs).waveform"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "54138308-b423-4e7c-9469-2002bfeb7918",
"metadata": {},
"outputs": [],
"source": [
"#from IPython.display import Audio\n",
"#Audio(output, rate=ttsModel.config.sampling_rate)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "bbf259d6-922d-4f5c-9af1-cbd57158a814",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7879\n",
"Running on public URL: https://ccee705195aed67b23.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://ccee705195aed67b23.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Gradio Function and Interface\n",
"import gradio as gr\n",
"from IPython.display import Audio\n",
"interface = gr.Interface(\n",
" fn=translate_transformers,\n",
" inputs=[\n",
" gr.Dropdown([\"Davlan/byt5-base-eng-yor-mt\", #Exp1\n",
" \"Davlan/m2m100_418M-eng-yor-mt\", #Exp2\n",
" \"Davlan/mbart50-large-eng-yor-mt\", #Exp3\n",
" \"Davlan/mt5_base_eng_yor_mt\", #Exp4\n",
" \"omoekan/opus-tatoeba-eng-yor\", #Exp5\n",
" \"masakhane/afrimt5_en_yor_news\", #Exp6\n",
" \"masakhane/afrimbart_en_yor_news\", #Exp7\n",
" \"masakhane/afribyt5_en_yor_news\", #Exp8\n",
" \"masakhane/byt5_en_yor_news\", #Exp9\n",
" \"masakhane/mt5_en_yor_news\", #Exp10\n",
" \"masakhane/mbart50_en_yor_news\", #Exp11\n",
" \"masakhane/m2m100_418M_en_yor_news\", #Exp12\n",
" \"masakhane/m2m100_418M_en_yor_rel_news\", #Exp13\n",
" \"masakhane/m2m100_418M_en_yor_rel_news_ft\", #Exp14\n",
" \"masakhane/m2m100_418M_en_yor_rel\", #Exp15\n",
" #\"facebook/nllb-200-distilled-600M\", #Exp16\n",
" #\"facebook/nllb-200-3.3B\", #Exp17\n",
" #\"facebook/nllb-200-1.3B\", #Exp18\n",
" #\"facebook/nllb-200-distilled-1.3B\", #Exp19\n",
" #\"keithhon/nllb-200-3.3B\" #Exp20\n",
" #\"CohereForAI/aya-101\" #Exp16\n",
" ], \n",
" label=\"Select Finetuned Eng2Yor Translation Model\"),\n",
" gr.Textbox(lines=2, placeholder=\"Enter English Text Here...\", label=\"English Text\") \n",
" ],\n",
" #outputs = \"text\",\n",
" #outputs=outputs=[\"text\", \"text\"],#\"text\"\n",
" #outputs= gr.Textbox(value=\"text\", label=\"Translated Text\"),\n",
" outputs=[\n",
" gr.Textbox(value=\"text\", label=\"Translated Yoruba Text\"),\n",
" #gr.Textbox(value=\"text\", label=translated_text_actual),\n",
" gr.Textbox(value=\"number\", label=\"WER(Word Error Rate) Score - The Lower the Better\"),\n",
" #gr.Textbox(value=\"number\", label=\"Bleu Score\")\n",
" gr.Audio(type=\"filepath\", label=\"Click to Generate Yoruba Text2Speech\")\n",
" ],\n",
" title=\"ASPMIR NEURAL MACHINE TRANSLATION(NMT) TESTBED FOR LOW RESOURCED AFRICAN LANGUAGES\",\n",
" description=\"{This Tool Allows Developers and Researchers to Carry Out Experiments on Low Resourced African Languages with State-of-the-Art NMT Finetuned Models.}\"\n",
")\n",
"\n",
"interface.launch(share=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3baee0f-fd85-4209-9d54-14451abd372a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|