File size: 3,929 Bytes
9935a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
856d9db
9935a4c
 
 
 
 
 
 
 
 
 
 
 
 
856d9db
9935a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
856d9db
9935a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
856d9db
9935a4c
 
856d9db
9935a4c
 
 
 
 
 
 
 
 
 
 
856d9db
9935a4c
 
856d9db
9935a4c
 
856d9db
9935a4c
 
 
 
 
 
 
 
 
 
 
856d9db
9935a4c
 
856d9db
9935a4c
 
 
 
 
 
 
 
856d9db
9935a4c
 
856d9db
9935a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "a3278dc9-0d83-4a37-aece-e46ac416988f",
   "metadata": {},
   "outputs": [],
   "source": [
    "#| default_exp app"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6810835-d62a-4f94-a52e-0e0cd163fb98",
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "from fastai.vision.all import *\n",
    "import gradio as gr\n",
    "title = \"FastAI - Big Cats Classifier\"\n",
    "description = \"Classify big cats using all Resnet models available pre-trained in FastAI\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6092ad61-d5cd-40f7-b2d2-20a77b0c8b0f",
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "learners = {\n",
    "    \"resnet-18\" : 'models/resnet18-model.pkl',\n",
    "    \"resnet-34\" : 'models/resnet34-model.pkl',\n",
    "    \"resnet-50\" : 'models/resnet50-model.pkl',\n",
    "    \"resnet-101\": 'models/resnet101-model.pkl',\n",
    "    \"resnet-152\": 'models/resnet152-model.pkl'\n",
    "}\n",
    "models = list(learners.keys())\n",
    "\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "632cbc1b-73b5-4992-8956-d4ae40f6b80b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "    \n",
    "def classify_image(img, model_file=\"resnet-101\"):\n",
    "    learn = load_learner(learners[model_file])\n",
    "    pred,idx,probs = learn.predict(img)\n",
    "    print(pred, idx, probs)\n",
    "    return dict(zip(learn.dls.vocab, map(float, probs)))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9b5f1cc6-5173-475a-9365-0cab11db2d03",
   "metadata": {},
   "outputs": [],
   "source": [
    "example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ]\n",
    "\n",
    "for c in example_images:\n",
    "    im = PILImage.create(c)\n",
    "    result = classify_image(im)\n",
    "    print(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a48e7483-c04b-4048-a1ae-34a8c7986a57",
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "image = gr.inputs.Image(size=(128,128))\n",
    "model = gr.inputs.Dropdown(choices=models)\n",
    "label = gr.outputs.Label()\n",
    "example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ]\n",
    "example_models = [] #list(learners.values())\n",
    "intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description )\n",
    "if __name__ == \"__main__\":\n",
    "    intf.launch(debug=True, inline=False)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cab071f9-7c3b-4b35-a0d1-3687731ffce5",
   "metadata": {},
   "outputs": [],
   "source": [
    "import nbdev\n",
    "nbdev.export.nb_export('app.ipynb', './')\n",
    "print('Export successful')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c7e6ddfb-9919-4a35-aac7-674d6fc5fd96",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e56bc359-81c7-4e70-a84a-5f81a0713cd3",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}