Spaces:
Build error
Build error
| import os | |
| import duckdb | |
| import gradio as gr | |
| from dotenv import load_dotenv | |
| from httpx import Client | |
| from huggingface_hub import HfApi | |
| #from llama_cpp import Llama | |
| import pandas as pd | |
| #from transformers import pipeline | |
| load_dotenv() | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" | |
| BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co" | |
| API_URL = "https://m82etjwvhoptr3t5.us-east-1.aws.endpoints.huggingface.cloud" | |
| headers = { | |
| "Accept" : "application/json", | |
| "Authorization": f"Bearer {HF_TOKEN}", | |
| "Content-Type": "application/json" | |
| } | |
| client = Client(headers=headers) | |
| api = HfApi(token=HF_TOKEN) | |
| # First approach: Use llama.cpp | |
| #llama = Llama(model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", n_ctx=2048) | |
| #def query_local_model(text): | |
| # pred = llama(text, temperature=0.1, max_tokens=500) | |
| # return pred["choices"][0]["text"] | |
| # Second approach: Use transformers -> Took too much time | |
| #pipe = pipeline("text-generation", model="motherduckdb/DuckDB-NSQL-7B-v0.1") | |
| #def query_local_model_transformers(text): | |
| # pred = pipe(text, max_length=1000) | |
| # return pred[0]["generated_text"] | |
| def get_first_parquet(dataset: str): | |
| resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}") | |
| return resp.json()["parquet_files"][0] | |
| def query_remote_model(text): | |
| payload = { | |
| "inputs": text, | |
| "parameters": {} | |
| } | |
| response = client.post(API_URL, headers=headers, json=payload) | |
| pred = response.json() | |
| return pred[0]["generated_text"] | |
| def text2sql(dataset_name, query_input): | |
| print(f"start text2sql for {dataset_name}") | |
| try: | |
| first_parquet = get_first_parquet(dataset_name) | |
| except Exception as error: | |
| return { | |
| schema_output: "", | |
| prompt_output: "", | |
| query_output: "", | |
| df:pd.DataFrame([{"error": f"β Could not get dataset schema. {error=}"}]) | |
| } | |
| first_parquet_url = first_parquet["url"] | |
| print(f"getting schema from {first_parquet_url}") | |
| con = duckdb.connect() | |
| con.execute("INSTALL 'httpfs'; LOAD httpfs;") | |
| # could get from Parquet instead? | |
| con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;") | |
| result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df() | |
| ddl_create = result.iloc[0,0] | |
| text = f"""### Instruction: | |
| Your task is to generate valid duckdb SQL to answer the following question. | |
| ### Input: | |
| Here is the database schema that the SQL query will run on: | |
| {ddl_create} | |
| ### Question: | |
| {query_input} | |
| ### Response (use duckdb shorthand if possible) replace all table names with {first_parquet_url} in the generated sql query: | |
| """ | |
| try: | |
| sql_output = query_remote_model(text) | |
| except Exception as error: | |
| return { | |
| schema_output: ddl_create, | |
| prompt_output: text, | |
| query_output: "", | |
| df:pd.DataFrame([{"error": f"β Unable to get the SQL query based on the text. {error=}"}]) | |
| } | |
| # Should be replaced by the prompt but not working | |
| sql_output = sql_output.replace("data", f"'{first_parquet_url}'") | |
| try: | |
| query_result = con.sql(sql_output).df() | |
| except Exception as error: | |
| query_result = pd.DataFrame([{"error": f"β Could not execute SQL query {error=}"}]) | |
| finally: | |
| con.close() | |
| return { | |
| schema_output: ddl_create, | |
| prompt_output: text, | |
| query_output:sql_output, | |
| df:query_result | |
| } | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Generate SQL queries based on a given text for your dataset") | |
| gr.Markdown("This space showcase how to generate a SQL query from a text and get the result.") | |
| gr.Markdown("Tech stack: duckdb and DuckDB-NSQL-7B model") | |
| dataset_name = gr.Textbox("jamescalam/world-cities-geo", label="Dataset Name") | |
| query_input = gr.Textbox("Which cities are part of Albania country?", label="Ask something about your data") | |
| examples = [ | |
| ["Cities from Albania country"], | |
| ["The continent with the most number of countries"], | |
| ["Cities that start with 'A'"], | |
| ["Cities by region"], | |
| ] | |
| gr.Examples(examples=examples, inputs=[query_input],outputs=[]) | |
| btn = gr.Button("Generate SQL") | |
| schema_output = gr.Textbox(label="Parquet Schema as CREATE DDL", interactive= False) | |
| prompt_output = gr.Textbox(label="Generated prompt", interactive= False) | |
| query_output = gr.Textbox(label="Output SQL", interactive= False) | |
| df = gr.DataFrame(datatype="markdown") | |
| btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[schema_output, prompt_output, query_output,df]) | |
| demo.launch(debug=True) | |