File size: 4,076 Bytes
27e0148
 
 
 
 
 
 
 
ad4860f
d61f780
27e0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad4860f
 
d61f780
27e0148
 
 
 
d61f780
 
ad4860f
27e0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61f780
638b67a
d61f780
 
54b1e02
d61f780
27e0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad4860f
27e0148
 
 
 
f05ca9d
27e0148
e2721aa
27e0148
 
 
 
 
 
 
ad4860f
27e0148
e2721aa
 
 
 
 
27e0148
 
 
 
 
d61f780
ad4860f
 
 
 
 
 
 
 
 
 
 
27e0148
 
 
 
 
 
 
 
 
 
ad4860f
 
a127a18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import duckdb
import gradio as gr
from dotenv import load_dotenv
from httpx import Client
from huggingface_hub import HfApi
from huggingface_hub.utils import logging
from llama_cpp import Llama
import pandas as pd
from transformers import pipeline

load_dotenv()

HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"


BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
API_URL = "https://m82etjwvhoptr3t5.us-east-1.aws.endpoints.huggingface.cloud"
headers = {
	"Accept" : "application/json",
	"Authorization": f"Bearer {HF_TOKEN}",
	"Content-Type": "application/json" 
}

logger = logging.get_logger(__name__)
client = Client(headers=headers)
api = HfApi(token=HF_TOKEN)

print("About to load DuckDB-NSQL-7B model")
"""
llama = Llama(
        model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf",
        n_ctx=2048,
)
"""
pipe = pipeline("text-generation", model="motherduckdb/DuckDB-NSQL-7B-v0.1")
print("DuckDB-NSQL-7B model has been loaded")

def get_first_parquet(dataset: str):
    resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
    return resp.json()["parquet_files"][0]


def query_remote_model(text):
    payload = {
        "inputs": text,
        "parameters": {}
    }
    response = client.post(API_URL, headers=headers, json=payload)
    pred = response.json()
    return pred[0]["generated_text"]

def query_local_model_transformers(text):
    pred = pipe(text, max_length=1000)
    print(type(pred))
    print(pred)
    return pred[0]["generated_text"]


def query_local_model(text):
    pred = llama(text, temperature=0.1, max_tokens=500)
    return pred["choices"][0]["text"]


def text2sql(dataset_name, query_input):
    print(f"start text2sql for {dataset_name}")
    try:
        first_parquet = get_first_parquet(dataset_name)
    except Exception as e:
        return f"❌ Dataset does not exist or is not supported {e}"
    first_parquet_url = first_parquet["url"]
    print(first_parquet_url)
    con = duckdb.connect()
    con.execute("INSTALL 'httpfs'; LOAD httpfs;")
    # could get from parquet instead?
    con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;")
    result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()

    ddl_create = result.iloc[0,0]
    
    text = f"""### Instruction:
    Your task is to generate valid duckdb SQL to answer the following question. Only the SQL query should be returned

    ### Input:
    Here is the database schema that the SQL query will run on:
    {ddl_create}
    ### Question:
    {query_input}

    ### Response (use duckdb shorthand if possible) replace table name with {first_parquet_url} in the generated sql query:
    """
    
    text = f"""Given the following SQL table, your job is to write queries given a user’s request.
    {ddl_create}
    Write a SQL query that computes the following request: {query_input}.
    """
    
    print(text)
    
    # sql_output =  query_remote_model(text)

    sql_output = query_local_model_transformers(text)

    try:
        query_result = con.sql(sql_output).df()
    except Exception as error:
        query_result = pd.DataFrame([{"error": f"❌ Could not execute SQL query {error=}"}])
    finally:
        con.close()
    return {
        query_output:sql_output,
        df:query_result
    }


with gr.Blocks() as demo:
    gr.Markdown("# Talk to your dataset")
    gr.Markdown("This space shows how to talk to your datasets: Get a brief description, create SQL queries, and get results.")
    gr.Markdown("Generate SQL queries'")
    dataset_name = gr.Textbox("sksayril/medicine-info", label="Dataset Name")
    query_input = gr.Textbox("How many rows there are?", label="Ask something about your data")
    btn = gr.Button("Generate SQL")
    query_output = gr.Textbox(label="Output SQL", interactive= False)    
    df = gr.DataFrame(datatype="markdown")
    btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[query_output,df])
demo.launch(debug=True)