Spaces:
Sleeping
Sleeping
File size: 4,321 Bytes
27e0148 ad4860f e543e92 c05248f 8222ac1 27e0148 a970ae0 27e0148 e543e92 8222ac1 e543e92 8222ac1 e543e92 c05248f 3f1630b 8222ac1 27e0148 8e28628 10c1114 32490fd 10c1114 27e0148 32490fd 27e0148 140f5d3 27e0148 f05ca9d 27e0148 639f8ea 27e0148 49e03fb 27e0148 c824141 27e0148 8e28628 3f1630b 8e28628 10c1114 32490fd 10c1114 457910c d34f941 c824141 ad4860f 32490fd ad4860f 27e0148 140f5d3 a857a43 3f1630b d34f941 c10fa06 27e0148 32490fd 27e0148 ad4860f 32490fd a127a18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
import duckdb
import gradio as gr
from dotenv import load_dotenv
from httpx import Client
from huggingface_hub import HfApi
import pandas as pd
#from transformers import pipeline
import spaces
from llama_cpp import Llama
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json"
}
client = Client(headers=headers)
api = HfApi(token=HF_TOKEN)
#pipe = pipeline("text-generation", model="motherduckdb/DuckDB-NSQL-7B-v0.1", device="cuda")
llama = Llama(
model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf",
n_ctx=2048,
n_gpu_layers=50
)
@spaces.GPU
def generate_sql(prompt):
# pred = pipe(prompt, max_length=1000)
# return pred[0]["generated_text"]
pred = llama(prompt, temperature=0.1, max_tokens=1000)
return pred["choices"][0]["text"]
def get_first_parquet(dataset: str):
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
return resp.json()["parquet_files"][0]
def text2sql(dataset_name, query_input):
print(f"start text2sql for {dataset_name}")
try:
first_parquet = get_first_parquet(dataset_name)
except Exception as error:
return {
schema_output: "",
prompt_output: "",
query_output: "",
df:pd.DataFrame([{"error": f"❌ Could not get dataset schema. {error=}"}])
}
first_parquet_url = first_parquet["url"]
print(f"getting schema from {first_parquet_url}")
con = duckdb.connect()
con.execute("INSTALL 'httpfs'; LOAD httpfs;")
# could get from Parquet instead?
con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;")
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()
ddl_create = result.iloc[0,0]
text = f"""### Instruction:
Your task is to generate valid duckdb SQL to answer the following question.
### Input:
Here is the database schema that the SQL query will run on:
{ddl_create}
### Question:
{query_input}
### Response (use duckdb shorthand if possible):
"""
try:
sql_output = generate_sql(text)
except Exception as error:
return {
schema_output: ddl_create,
prompt_output: text,
query_output: "",
df:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {error=}"}])
}
# Should be replaced by the prompt but not working
sql_output = sql_output.replace("FROM data", f"FROM '{first_parquet_url}'")
try:
query_result = con.sql(sql_output).df()
except Exception as error:
query_result = pd.DataFrame([{"error": f"❌ Could not execute SQL query {error=}"}])
finally:
con.close()
return {
schema_output: ddl_create,
prompt_output: text,
query_output:sql_output,
df:query_result
}
with gr.Blocks() as demo:
gr.Markdown("# Generate SQL queries based on a given text for your dataset")
gr.Markdown("This space showcase how to generate a SQL query from a text and get the result.")
gr.Markdown("Tech stack: duckdb and DuckDB-NSQL-7B model")
dataset_name = gr.Textbox("jamescalam/world-cities-geo", label="Dataset Name")
query_input = gr.Textbox("Cities from Albania country", label="Ask something about your data")
examples = [
["Cities from Albania country"],
["The continent with the most number of countries"],
["Cities that start with 'A'"],
["Cities by region"],
]
gr.Examples(examples=examples, inputs=[query_input],outputs=[])
btn = gr.Button("Generate SQL")
schema_output = gr.Textbox(label="Parquet Schema as CREATE DDL", interactive= False)
prompt_output = gr.Textbox(label="Generated prompt", interactive= False)
query_output = gr.Textbox(label="Output SQL", interactive= False)
df = gr.DataFrame(datatype="markdown")
btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[schema_output, prompt_output, query_output,df])
demo.launch(debug=True)
|