File size: 5,492 Bytes
e62a0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def replace_wildcards(templates, wildcards, replacements):
    if len(wildcards) != len(replacements):
        raise ValueError(
            "The number of wildcards must match the number of replacements."
        )

    new_templates = []
    for tmp in templates:
        tmp_text = tmp["source"]
        for wildcard, replacement in zip(wildcards, replacements):
            tmp_text = tmp_text.replace(wildcard, replacement)
        new_templates.append({"cell_type": tmp["cell_type"], "source": tmp_text})

    return new_templates


rag_cells = [
    {
        "cell_type": "markdown",
        "source": "# Retrieval-Augmented Generation (RAG) System Notebook",
    },
    {"cell_type": "code", "source": ""},
]

embeggins_cells = [
    {
        "cell_type": "markdown",
        "source": "# Embeddings Generation Notebook",
    },
    {"cell_type": "code", "source": ""},
]

eda_cells = [
    {
        "cell_type": "markdown",
        "source": "# Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset",
    },
    {
        "cell_type": "code",
        "source": """
from IPython.display import HTML
display(HTML("{html_code}"))
""",
    },
    {
        "cell_type": "code",
        "source": """
# 1. Install and import necessary libraries.
!pip install pandas matplotlib seaborn
""",
    },
    {
        "cell_type": "code",
        "source": """
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
""",
    },
    {
        "cell_type": "code",
        "source": """
# 2. Load the dataset as a DataFrame using the provided code
{first_code}
""",
    },
    {
        "cell_type": "code",
        "source": """
# 3. Understand the dataset structure
print(df.head())
print(df.info())
print(df.describe())
""",
    },
    {
        "cell_type": "code",
        "source": """
# 4. Check for missing values
print(df.isnull().sum())
""",
    },
    {
        "cell_type": "code",
        "source": """
# 5. Identify data types of each column
print(df.dtypes)
""",
    },
    {
        "cell_type": "code",
        "source": """
# 6. Detect duplicated rows
print(df.duplicated().sum())
""",
    },
    {
        "cell_type": "code",
        "source": """
# 7. Generate descriptive statistics
print(df.describe())
""",
    },
    {
        "cell_type": "code",
        "source": """
# 8. Visualize the distribution of each column.
# TODO: Add code to visualize the distribution of each column.
# 9. Explore relationships between columns.
# TODO: Add code to explore relationships between columns.
# 10. Perform correlation analysis.
# TODO: Add code to perform correlation analysis.
""",
    },
]


def generate_embedding_system_prompt():
    """You are an expert data scientist tasked with creating a Jupyter notebook to generate embeddings for a specific dataset.
    Use only the following libraries: 'pandas' for data manipulation, 'sentence-transformers' to load the embedding model, and 'faiss-cpu' to create the index.

    The notebook should include:

    1. Install necessary libraries with !pip install.
    2. Import libraries.
    3. Load the dataset as a DataFrame using the provided code.
    4. Select the column to generate embeddings.
    5. Remove duplicate data.
    6. Convert the selected column to a list.
    7. Load the sentence-transformers model.
    8. Create a FAISS index.
    9. Encode a query sample.
    10. Search for similar documents using the FAISS index.

    Ensure the notebook is well-organized with explanations for each step.
    The output should be Markdown content with Python code snippets enclosed in "```python" and "```".

    The user will provide dataset information in the following format:

    ## Columns and Data Types

    ## Sample Data

    ## Loading Data code

    Use the provided code to load the dataset; do not use any other method.
    """


def generate_rag_system_prompt():
    """You are an expert machine learning engineer tasked with creating a Jupyter notebook to demonstrate a Retrieval-Augmented Generation (RAG) system using a specific dataset.
    The dataset is provided as a pandas DataFrame.

    Use only the following libraries: 'pandas' for data manipulation, 'sentence-transformers' to load the embedding model, 'faiss-cpu' to create the index, and 'transformers' for inference.

    The RAG notebook should include:

    1. Install necessary libraries.
    2. Import libraries.
    3. Load the dataset as a DataFrame using the provided code.
    4. Select the column for generating embeddings.
    5. Remove duplicate data.
    6. Convert the selected column to a list.
    7. Load the sentence-transformers model.
    8. Create a FAISS index.
    9. Encode a query sample.
    10. Search for similar documents using the FAISS index.
    11. Load the 'HuggingFaceH4/zephyr-7b-beta' model from the transformers library and create a pipeline.
    12. Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query.
    13. Send the prompt to the pipeline and display the answer.

    Ensure the notebook is well-organized with explanations for each step.
    The output should be Markdown content with Python code snippets enclosed in "```python" and "```".

    The user will provide the dataset information in the following format:

    ## Columns and Data Types

    ## Sample Data

    ## Loading Data code

    Use the provided code to load the dataset; do not use any other method.
    """