File size: 1,669 Bytes
95a56c0
 
 
 
 
de3c2ee
 
 
95a56c0
 
 
 
 
de3c2ee
 
 
 
95a56c0
 
 
 
 
 
 
 
 
 
 
de3c2ee
 
 
 
 
95a56c0
 
 
 
 
 
 
 
 
de3c2ee
 
 
95a56c0
de3c2ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from fastapi import FastAPI, Depends, HTTPException, Query
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel

from helper import get_response_from_model

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

class InputData(BaseModel):
    user_input: str
    api_key: str

@app.get("/", response_class=HTMLResponse)
async def read_root():
    with open("static/index.html", "r") as f:
        content = f.read()
    return HTMLResponse(content=content)

# Initialize model and tokenizer
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-int4")
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat-int4").eval()

@app.post("/chat/")
def chat(input_data: InputData):
    print("input_data: ", input_data)
    user_input = input_data.user_input
    api_key = input_data.api_key

    # Here you can validate the API key, e.g., check if it exists in your database
    # If the API key is not valid, raise an HTTPException
    # if not validate_api_key(api_key):
    #     raise HTTPException(status_code=400, detail="Invalid API key")

    # Tokenize the user input and get model's response
    # input_ids = tokenizer.encode(user_input, return_tensors="pt")
    # output = model.generate(input_ids)
    # response = tokenizer.decode(output[0], skip_special_tokens=True)
    response = get_response_from_model(user_input)

    return {"response": response} 
    
    # return {"response": f"user input: {input_data.user_input}, api_key: {input_data.api_key}"}