File size: 12,005 Bytes
de3c2ee c12d231 de3c2ee 168593d de3c2ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import ast
import json
import os
from pathlib import Path
import openai
import pandas as pd
import numpy as np
from tqdm import tqdm
from annoy import AnnoyIndex
from openai_function_utils.openai_function_interface import OPENAI_AVAILABLE_FUNCTIONS, OPENAI_FUNCTIONS_DEFINITIONS
DEBUG_PRINT = False
# openai.api_key = OPENAI_KEY
# openai.organization = 'org-dsEkob5KeBBq3lbBLhnCXcJt'
def get_embeddings(input):
response = openai.Embedding.create(model="text-embedding-ada-002", input=input)
return response['data'][0]['embedding']
def debug_print(*args, **kwargs):
if DEBUG_PRINT:
print(*args, **kwargs)
def transform_user_question(question, model):
messages = [
{"role": "system",
"content": "You are a helpful assistant for ChatGPT that will formulate user's input question to a version that is more understandable by ChatGPT for answering questions related to a research lab."},
{"role": "user",
"content": f"Formulate this question into a version that is more understandable by ChatGPT: \"{question}\""}
# "content": f"Formulate this question into a version that is more understandable by ChatGPT and is more suitable for embedding retrieval (i.e. we will use the embedding of the re-formulated question to retrieve related documents): \"{question}\""}
]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
max_tokens=200
)
chagpt_question = response["choices"][0]["message"].content
return chagpt_question
def answer_with_gpt3_with_function_calls(input_text, question, model):
question = f"Based on the input text: {input_text}\n Give me answers for this question: {question}"
messages = [
{
"role": "system",
"content": "".join([
"You are a helpful assistant for ChatGPT that will answer the user's questions. "
])
},
{
"role": "user",
"content": question
}
]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
functions=OPENAI_FUNCTIONS_DEFINITIONS,
max_tokens=200
)
response_message = response["choices"][0]["message"]
messages.append(
{
"role": "assistant",
"content": response_message.get("content"),
"function_call": response_message.get("function_call"),
}
)
# Check if GPT wanted to call a function
if response_message.get("function_call"):
# Call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = OPENAI_AVAILABLE_FUNCTIONS # only one function in this example, but you can have multiple
function_name = response_message["function_call"]["name"]
# Step 4: send the info on the function call and function response to GPT
if function_name == "semantic_search":
# print("Running semantic search")
# print(response_message["function_call"]["arguments"])
function_args = json.loads(response_message["function_call"]["arguments"])
embedding = get_embeddings(function_args['query'])
function_response = search_document(embedding, 3)
messages.append({
"role": "function",
"name": "semantic_search",
"content": function_response
})
second_response = openai.ChatCompletion.create(
model=model,
messages=messages,
) # get a new response from GPT where it can see the function response
return second_response.choices[0].message.content
else:
function_to_call = available_functions[function_name]
function_args = json.loads(response_message["function_call"]["arguments"])
function_response = function_to_call(**function_args)
messages.append(response_message) # extend conversation with assistant's reply
messages.append(
{
"role": "function",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
# messages.append(
# {
# "role": "user",
# "content": "give me publication of J Coleman"
# }
# )
print("DEBUG: messages", messages)
second_response = openai.ChatCompletion.create(
model=model,
messages=messages,
) # get a new response from GPT where it can see the function response
return second_response.choices[0].message.content
else:
return response.choices[0].message.content
def answer_with_gpt3(input_text, question):
messages = [{"role": "system",
"content": "You are an intelligent chatbot for answering user's questions related to a research lab."}]
message = f"Based on the input text: {input_text}\n Give me answers for this question: {question}"
messages.append({"role": "user", "content": message})
chat = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
functions=OPENAI_FUNCTIONS_DEFINITIONS,
max_tokens=200
)
reply = chat.choices[0].message.content
return reply
def search_document(user_question_embed: list, top_k: int = 1):
csv_filename = 'database/document_name_to_embedding.csv'
if not os.path.exists(csv_filename):
print("This won't happen!")
return
df = pd.read_csv(csv_filename)
# Convert the embedding column from string to list/array
df['embedding'] = df['embedding'].apply(ast.literal_eval).apply(np.array)
# Calculate cosine similarity
user_question_norm = np.linalg.norm(user_question_embed)
similarities = {}
for _, row in df.iterrows():
dot_product = np.dot(user_question_embed, row['embedding'])
embedding_norm = np.linalg.norm(row['embedding'])
cosine_similarity = dot_product / (user_question_norm * embedding_norm)
similarities[row['original_filename']] = cosine_similarity
# Rank documents by similarity
ranked_documents = sorted(similarities.items(), key=lambda x: x[1], reverse=True)
debug_print("Ranked documents by similarity:", ranked_documents)
# Get the most similar article
for i in range(top_k):
best_document_filename = ranked_documents[i][0]
with open(best_document_filename, 'rb') as f:
document_content = f.read().decode('utf-8')
debug_print("document_content: ", document_content)
return document_content
def search_document_annoy(user_question_embed: list, top_k: int, metric):
csv_filename = 'database/document_name_to_embedding.csv'
if not os.path.exists(csv_filename):
print("This won't happen!")
return
df = pd.read_csv(csv_filename)
# Convert the embedding column from string to list/array
df['embedding'] = df['embedding'].apply(ast.literal_eval).apply(np.array)
f = len(df['embedding'][0]) # Length of item vector that will be indexed
t = AnnoyIndex(f, metric)
for i in range(len(df)):
v = df['embedding'][i]
t.add_item(i, v)
t.build(10) # 10 trees
t.save('test.ann')
u = AnnoyIndex(f, metric)
u.load('test.ann') # will just mmap the file
ret = u.get_nns_by_vector(user_question_embed, top_k) # will find top 3 nearest neighbors
debug_print(df['original_filename'][ret[0]])
document_content = ""
for name in ret:
best_document_filename = df['original_filename'][name]
with open(best_document_filename, 'rb') as f:
document_content += f.read().decode('utf-8')
debug_print("document_content: ", document_content)
return document_content
def get_document_embeddings(path: str, all_fns: list):
all_embeddings = []
all_embedding_fns = []
all_original_filename = []
output_sub_dir = path.split('database/original_documents/')
output_sub_dir = '' if len(output_sub_dir) == 1 else output_sub_dir[1]
output_dir = os.path.join('database/embeddings', output_sub_dir)
Path(output_dir).mkdir(parents=True, exist_ok=True)
for fn in tqdm(all_fns):
document_name = fn.split('.')[0]
original_filename = os.path.join(path, fn)
try:
with open(original_filename, 'rb') as fin:
tmp_file = fin.read().decode('utf-8')
embedding = get_embeddings(tmp_file)
if embedding is not None:
embedding_fn = os.path.join(output_dir, document_name + '.json')
with open(embedding_fn, 'w') as fout:
json.dump(embedding, fout)
all_original_filename.append(original_filename)
all_embedding_fns.append(embedding_fn)
all_embeddings.append(embedding)
except Exception:
print(
f"Error when obtaining embedding vector for {original_filename}. The model's maximum context length is 8192 tokens. Please make sure the file is valid and file length is not too long.")
return pd.DataFrame({
'original_filename': all_original_filename,
'embedding_filename': all_embedding_fns,
'embedding': all_embeddings
})
def util():
model = "gpt-3.5-turbo"
question = "Can you give me a paper about graph neural networks?"
functions = [
{
"name": "semantic_search",
"description": "does a semantic search over the documents based on query",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The query to search for",
}
},
"required": ["query"],
}
},
]
messages = [
{
"role": "system",
"content": "".join([
"You are a helpful assistant for ChatGPT that will answer the user's questions. ",
"In order to do so, you may use semantic_search to find relevant documents. ",
])
},
{
"role": "user",
"content": question
}
]
while True:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
max_tokens=200,
functions=functions
)
response_message = response["choices"][0]["message"]
messages.append(
{
"role": "assistant",
"content": response_message.get("content"),
"function_call": response_message.get("function_call"),
}
)
if response_message.get("function_call"):
function_args = json.loads(response_message["function_call"]["arguments"])
embedding = get_embeddings(function_args['query'])
function_response = search_document(embedding)
messages.append({
"role": "function",
"name": "semantic_search",
"content": function_response
})
else:
print("Answering question")
print(response_message["content"])
return
def main():
final_df = pd.DataFrame({})
all_fn_list = os.walk('database/original_documents')
for path, _, fn_list in all_fn_list:
filename_to_embedding_df = get_document_embeddings(path, fn_list)
final_df = pd.concat([final_df, filename_to_embedding_df], axis=0, ignore_index=True)
final_df.to_csv('database/document_name_to_embedding.csv')
if __name__ == "__main__":
main()
|