Update app.py
Browse files
app.py
CHANGED
@@ -278,7 +278,7 @@ def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type,
|
|
278 |
|
279 |
print('Done!')
|
280 |
print('=' * 70)
|
281 |
-
print(len(melody_chords))
|
282 |
print('=' * 70)
|
283 |
|
284 |
#==================================================================
|
@@ -289,56 +289,37 @@ def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type,
|
|
289 |
print('=' * 70)
|
290 |
print('Generating...')
|
291 |
|
292 |
-
output = []
|
293 |
-
|
294 |
-
max_chords_limit = 8
|
295 |
temperature=0.9
|
296 |
-
num_memory_tokens=4096
|
297 |
|
298 |
output = []
|
299 |
|
300 |
-
|
|
|
|
|
|
|
301 |
|
302 |
-
for
|
303 |
-
|
304 |
-
output.append(c)
|
305 |
|
306 |
-
|
307 |
-
output.append(times[idx])
|
308 |
|
309 |
-
|
310 |
-
output.append(durs[idx])
|
311 |
-
|
312 |
-
x = torch.tensor([output] * 1, dtype=torch.long, device='cuda')
|
313 |
-
|
314 |
-
o = 0
|
315 |
-
|
316 |
-
ncount = 0
|
317 |
-
|
318 |
-
while o < 384 and ncount < max_chords_limit:
|
319 |
-
with ctx:
|
320 |
-
out = model.generate(x[-num_memory_tokens:],
|
321 |
-
1,
|
322 |
-
temperature=temperature,
|
323 |
-
return_prime=False,
|
324 |
-
verbose=False)
|
325 |
-
|
326 |
-
o = out.tolist()[0][0]
|
327 |
-
|
328 |
-
if 256 <= o < 384:
|
329 |
-
ncount += 1
|
330 |
-
|
331 |
-
if o < 384:
|
332 |
-
x = torch.cat((x, out), 1)
|
333 |
-
|
334 |
-
outy = x.tolist()[0][len(output):]
|
335 |
-
|
336 |
-
output.extend(outy)
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
print('=' * 70)
|
344 |
print('Done!')
|
@@ -351,17 +332,15 @@ def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type,
|
|
351 |
print('Sample INTs', output[:12])
|
352 |
print('=' * 70)
|
353 |
|
354 |
-
|
355 |
-
|
356 |
-
if len(out1) != 0:
|
357 |
|
358 |
-
song =
|
359 |
song_f = []
|
360 |
|
361 |
time = 0
|
362 |
-
dur =
|
363 |
vel = 90
|
364 |
-
pitch =
|
365 |
channel = 0
|
366 |
|
367 |
patches = [0] * 16
|
|
|
278 |
|
279 |
print('Done!')
|
280 |
print('=' * 70)
|
281 |
+
print('Melody chords length:', len(melody_chords))
|
282 |
print('=' * 70)
|
283 |
|
284 |
#==================================================================
|
|
|
289 |
print('=' * 70)
|
290 |
print('Generating...')
|
291 |
|
|
|
|
|
|
|
292 |
temperature=0.9
|
|
|
293 |
|
294 |
output = []
|
295 |
|
296 |
+
num_prime_chords = 1
|
297 |
+
|
298 |
+
for m in melody_chords2[:num_prime_chords]:
|
299 |
+
output.extend(m)
|
300 |
|
301 |
+
for ct in tqdm.tqdm(melody_chords2[num_prime_chords:]):
|
|
|
|
|
302 |
|
303 |
+
output.extend(ct[:2])
|
|
|
304 |
|
305 |
+
y = 646
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
while y > 645:
|
308 |
+
|
309 |
+
x = torch.tensor(song, dtype=torch.long, device=DEVICE)
|
310 |
+
|
311 |
+
with ctx:
|
312 |
+
out = model.generate(x,
|
313 |
+
1,
|
314 |
+
temperature=temperature,
|
315 |
+
eos_token=2237,
|
316 |
+
return_prime=False,
|
317 |
+
verbose=False)
|
318 |
+
|
319 |
+
y = out.tolist()[0][0]
|
320 |
+
|
321 |
+
if y > 645:
|
322 |
+
output.append(y)
|
323 |
|
324 |
print('=' * 70)
|
325 |
print('Done!')
|
|
|
332 |
print('Sample INTs', output[:12])
|
333 |
print('=' * 70)
|
334 |
|
335 |
+
if len(output) != 0:
|
|
|
|
|
336 |
|
337 |
+
song = output
|
338 |
song_f = []
|
339 |
|
340 |
time = 0
|
341 |
+
dur = 4
|
342 |
vel = 90
|
343 |
+
pitch = 60
|
344 |
channel = 0
|
345 |
|
346 |
patches = [0] * 16
|