File size: 12,331 Bytes
45454da
 
 
e3ed184
 
 
 
 
 
 
 
 
45454da
e3ed184
 
 
 
 
45454da
e3ed184
 
 
 
fa9d7e5
 
e3ed184
 
 
fa9d7e5
e3ed184
 
 
1c9e690
 
 
e3ed184
 
 
 
 
 
1c9e690
e3ed184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9d7e5
 
 
 
 
1c9e690
 
 
 
 
fa9d7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ed184
 
 
 
 
 
 
fa9d7e5
e3ed184
 
 
78b066f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ed184
78b066f
 
 
 
 
e3ed184
78b066f
 
 
 
e3ed184
78b066f
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ed184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9d7e5
e3ed184
fa9d7e5
 
 
 
e3ed184
 
 
fa9d7e5
e3ed184
fa9d7e5
 
e3ed184
fa9d7e5
 
 
 
 
 
 
e3ed184
fa9d7e5
e3ed184
fa9d7e5
e3ed184
fa9d7e5
e3ed184
fa9d7e5
e3ed184
fa9d7e5
e3ed184
fa9d7e5
e3ed184
 
fa9d7e5
e3ed184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45454da
e3ed184
e2681d4
45454da
e3ed184
45454da
70199bd
 
 
 
e3ed184
70199bd
 
b44558c
 
 
 
e3ed184
 
 
 
 
 
 
 
 
 
 
fa9d7e5
e3ed184
 
70199bd
 
 
 
 
 
 
 
 
 
 
 
e3ed184
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#=======================================================================
# https://huggingface.co/spaces/asigalov61/Guided-Rock-Music-Transformer
#=======================================================================

import os
import time as reqtime
import datetime
from pytz import timezone

import spaces
import gradio as gr

import torch
from x_transformer_1_23_2 import *
import random

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

# =================================================================================================
                       
@spaces.GPU
def Generate_Rock_Song(input_midi, input_melody_seed_number):
    
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    print('=' * 70)

    print('Loading model...')

    SEQ_LEN = 4096
    PAD_IDX = 673
    DEVICE = 'cuda' # 'cpu'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 16, heads = 16, rotary_pos_emb=True, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Melody2Song_Seq2Seq_Music_Transformer_Trained_Model_28482_steps_0.719_loss_0.7865_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.bfloat16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    #==================================================================

    fn = os.path.basename(input_midi)
    fn1 = fn.split('.')[0]

    print('=' * 70)
    print('Requested settings:')
    print('=' * 70)
    print('Input MIDI file name:', fn)
    
    #===============================================================================
    # Raw single-track ms score
    
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    escore_notes = [e for e in escore_notes if e[6] < 72 or e[6] == 128]
    
    #=======================================================
    # PRE-PROCESSING
    
    #===============================================================================
    # Augmented enhanced score notes
    
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32, legacy_timings=True)
    
    #===============================================================================
    
    dscore = TMIDIX.enhanced_delta_score_notes(escore_notes)
    
    cscore = TMIDIX.chordify_score(dscore)
    
    #===============================================================================
    
    score_toks = []
    control_toks = []
    prime_toks = []
    
    for c in cscore:
    
        ctime = c[0][0]
    
        #=================================================================
    
        chord = sorted(c, key=lambda x: -x[5])
    
        gnotes = []
        gdrums = []
    
        for k, v in groupby(chord, key=lambda x: x[5]):
            if k == 128:
                gdrums.extend(sorted(v, key=lambda x: x[3], reverse=True))
            else:
                gnotes.append(sorted(v, key=lambda x: x[3], reverse=True))
    
        #=================================================================
    
        chord_toks = []
        ctoks = []
        ptoks = []
    
        chord_toks.append(ctime)
        ptoks.append(ctime)
    
        if gdrums:
            chord_toks.extend([e[3]+128 for e in gdrums] + [128])
            ptoks.extend([e[3]+128 for e in gdrums] + [128])
        
        else:
            chord_toks.append(128)
            ptoks.append(128)
    
        if gnotes:
            for g in gnotes:
                
                durs = [e[1] // 4 for e in g]
                clipped_dur = max(1, min(31, min(durs)))
                
                chan = max(0, min(8, g[0][5] // 8))
    
                chan_dur_tok = ((chan * 32) + clipped_dur) + 256
    
                ctoks.append([chan_dur_tok, len(g)])
    
                ptoks.append(chan_dur_tok)
                ptoks.extend([e[3]+544 for e in g])
                
        score_toks.append(chord_toks)
        control_toks.append(ctoks)
        prime_toks.append(ptoks)
        
    print('Input melody seed number:', input_melody_seed_number)
    print('-' * 70)

    #==================================================================

    print('=' * 70)
    
    print('Sample output events', prime_toks[:16])
    print('=' * 70)
    print('Generating...')

    #==================================================================

    def generate_tokens(seq, max_num_ptcs=10):
    
        input = copy.deepcopy(seq)
    
        pcount = 0
        y = 545
    
        gen_tokens = []
    
        while pcount < max_num_ptcs and y > 255:
    
            x = torch.tensor(input, dtype=torch.long, device='cuda')
        
            with ctx:
              out = model.generate(x,
                                  1,
                                  filter_logits_fn=top_k,
                                  filter_kwargs={'k': 10},
                                  temperature=0.9,
                                  return_prime=False,
                                  verbose=False)
            
            y = out[0].tolist()[0]
    
            if pcount < max_num_ptcs and y > 255:
                input.append(y)
                gen_tokens.append(y)
                if y > 544:
                    pcount += 1
    
        return gen_tokens

    #==================================================================

    num_prime_chords = 128
    pass_chan_dur_tok = False
    match_ptcs_counts = False
    
    song = []
    
    for i in range(num_prime_chords):
        song.extend(prime_toks[i])
    
    for i in tqdm.tqdm(range(num_prime_chords, len(score_toks))):
        
        song.extend(score_toks[i])
    
        if control_toks[i]:
            for ct in control_toks[i]:
                if pass_chan_dur_tok:
                    song.append(ct[0])
                if match_ptcs_counts:
                    out_seq = generate_tokens(song, ct[1])
                else:
                    out_seq = generate_tokens(song)
                song.extend(out_seq)

    #==================================================================
            
    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', output[:15])
    print('=' * 70)
    
    out1 = output

    if len(out1) != 0:
    
        song = out1
        song_f = []
    
        time = 0
        dur = 32
        channel = 0
        pitch = 60
        vel = 90
        
        patches = [0, 10, 19, 24, 35, 40, 52, 56, 65, 9, 73, 46, 0, 0, 0, 0]
    
        for ss in song:
    
            if 0 <= ss < 128:
    
                time += ss * 32
                
            if 128 < ss < 256:
                
                song_f.append(['note', time, 32, 9, ss-128, 110, 128])
                
            if 256 < ss < 544:
    
                dur =  ((ss-256) % 32) * 4 * 32
                channel = (ss-256) // 32
    
            if 544 < ss < 672:
    
                patch = channel * 8
    
                pitch = ss-544
    
                song_f.append(['note', time, dur, channel, pitch, vel, patch])
    
    song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)

    fn1 = "Guided-Rock-Music-Transformer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Guided Rock Music Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', output_midi_summary)
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"

    app = gr.Blocks()
    
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Rock Music Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique rock music compositions with source augmented RoPE music transformer</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Guided-Rock-Music-Transformer&style=flat)\n\n")

        gr.Markdown("## Upload your MIDI or select a sample example MIDI below")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        
        gr.Markdown("## Select generation options")

        input_freestyle_continuation = gr.Checkbox(label="Freestyle continuation", value=False)
        input_number_prime_chords = gr.Slider(0, 512, value=128, step=8, label="Number of prime chords")
        input_use_original_durations = gr.Checkbox(label="Use original durations", value=False)
        input_match_original_pitches_counts = gr.Checkbox(label="Match original pitches counts", value=False)

        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        run_event = run_btn.click(Generate_Rock_Song, [input_midi, input_melody_seed_number],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        gr.Examples(
            [["Sharing The Night Together.kar", 0, True], 
            ],
            [input_midi, 
             input_melody_seed_number, 
             input_find_best_match,
            ],
            [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
            Generate_Rock_Song,
            cache_examples=False,
        )
        
        app.queue().launch()