Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import time as reqtime
|
|
6 |
import datetime
|
7 |
from pytz import timezone
|
8 |
|
9 |
-
import
|
10 |
|
11 |
import gradio as gr
|
12 |
|
@@ -18,9 +18,26 @@ import TMIDIX
|
|
18 |
|
19 |
import matplotlib.pyplot as plt
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def Generate_Melody(input_parsons_code,
|
26 |
input_first_note_duration,
|
@@ -31,243 +48,133 @@ def Generate_Melody(input_parsons_code,
|
|
31 |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
32 |
start_time = reqtime.time()
|
33 |
|
34 |
-
print('
|
35 |
print('Requested settings:')
|
36 |
print('-' * 70)
|
37 |
print('Parsons code:', input_parsons_code)
|
38 |
print('First note duration:', input_first_note_duration)
|
39 |
print('First note MIDI pitch:', iinput_first_note_MIDI_pitch)
|
40 |
-
print('
|
41 |
|
42 |
#===============================================================================
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
src_escore = TMIDIX.recalculate_score_timings(TMIDIX.augment_enhanced_score_notes([e for e in raw_escore if e[6] < 80]))
|
56 |
-
|
57 |
-
src_cscore = TMIDIX.chordify_score([1000, src_escore])
|
58 |
-
|
59 |
-
src_melody = [c[0] for c in src_cscore][:256]
|
60 |
-
|
61 |
-
if input_transform == 'Flip Melody':
|
62 |
-
src_melody = TMIDIX.flip_enhanced_score_notes(src_melody)
|
63 |
-
|
64 |
-
elif input_transform == 'Reverse Melody':
|
65 |
-
src_melody = TMIDIX.reverse_enhanced_score_notes(src_melody)
|
66 |
-
|
67 |
-
mel_avg_time = TMIDIX.escore_notes_averages(src_melody)[0]
|
68 |
-
|
69 |
-
src_melody_pitches = [p[4] for p in src_melody]
|
70 |
-
|
71 |
-
src_harm_tones_chords = TMIDIX.harmonize_enhanced_melody_score_notes(src_melody)
|
72 |
-
|
73 |
-
#===============================================================================
|
74 |
-
|
75 |
-
matched_songs = [a for a in all_songs if a[2] == max(32, len(src_melody))]
|
76 |
-
|
77 |
-
random.shuffle(matched_songs)
|
78 |
-
|
79 |
-
max_match_ratio = -1
|
80 |
-
max_match_ratios_count = len(matched_songs)
|
81 |
-
|
82 |
-
if input_find_best_match:
|
83 |
-
new_song, max_match_ratio, max_match_ratios_count = find_similar_song(matched_songs, src_melody)
|
84 |
-
else:
|
85 |
-
new_song = random.choice(matched_songs)
|
86 |
-
|
87 |
-
print('Selected Monster Mono Melodies MIDI:', new_song[0])
|
88 |
-
print('Selected melody match ratio:', max_match_ratio)
|
89 |
-
print('Selected melody instrument:', TMIDIX.Number2patch[new_song[1]], '(', new_song[1], ')')
|
90 |
-
print('Melody notes count:', new_song[2])
|
91 |
-
print('Matched melodies pool count', max_match_ratios_count)
|
92 |
-
|
93 |
-
MIDI_Summary = 'Selected Monster Mono Melodies MIDI: ' + str(new_song[0]) + '\n'
|
94 |
-
MIDI_Summary += 'Selected melody match ratio: ' + str(max_match_ratio) + '\n'
|
95 |
-
MIDI_Summary += 'Selected melody instrument: ' + str(TMIDIX.Number2patch[new_song[1]]) + ' (' + str(new_song[1]) + ')' + '\n'
|
96 |
-
MIDI_Summary += 'Melody notes count: ' + str(new_song[2]) + '\n'
|
97 |
-
MIDI_Summary += 'Matched melodies pool count: ' + str(max_match_ratios_count)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
trg_patch = new_song[1]
|
102 |
-
|
103 |
-
trg_song = copy.deepcopy(new_song[3])
|
104 |
-
|
105 |
-
mix_avg_time = TMIDIX.escore_notes_averages(trg_song)[0]
|
106 |
-
mix_mel_avg_time = TMIDIX.escore_notes_averages([e for e in trg_song if e[6] == trg_patch])[0]
|
107 |
-
|
108 |
-
TMIDIX.adjust_score_velocities(trg_song, 95)
|
109 |
-
|
110 |
-
cscore = TMIDIX.chordify_score([1000, trg_song])
|
111 |
-
|
112 |
-
print('=' * 70)
|
113 |
-
print('Done loading source and target MIDIs...!')
|
114 |
-
print('=' * 70)
|
115 |
-
print('Mixing...')
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
next_note_dtime = 255
|
121 |
-
|
122 |
-
for i, c in enumerate(cscore):
|
123 |
-
cho = copy.deepcopy(c)
|
124 |
-
|
125 |
-
patches = sorted(set([e[6] for e in c]))
|
126 |
-
|
127 |
-
if trg_patch in patches:
|
128 |
-
|
129 |
-
if input_adjust_melody_notes_durations:
|
130 |
-
if midx < len(src_melody)-1:
|
131 |
-
next_note_dtime = src_melody[midx+1][1] - src_melody[midx][1]
|
132 |
-
else:
|
133 |
-
next_note_dtime = 255
|
134 |
-
|
135 |
-
mixed_song.extend(mix_chord(c, src_harm_tones_chords[midx], trg_patch, src_melody_pitches[midx], next_note_dtime))
|
136 |
-
|
137 |
-
midx += 1
|
138 |
-
|
139 |
-
else:
|
140 |
-
if input_adjust_accompaniment_notes_durations:
|
141 |
-
if i < len(cscore)-1:
|
142 |
-
next_note_dtime = cscore[i+1][0][1] - cscore[i][0][1]
|
143 |
-
else:
|
144 |
-
next_note_dtime = 255
|
145 |
-
|
146 |
-
mixed_song.extend(mix_chord(cho, src_harm_tones_chords[midx], trg_patch, src_melody_pitches[midx], next_note_dtime))
|
147 |
|
148 |
-
|
149 |
-
|
150 |
|
151 |
-
|
152 |
-
print('Done!')
|
153 |
-
print('=' * 70)
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
pitches = [e[4] for e in c if e[6] == trg_patch]
|
166 |
-
|
167 |
-
for cc in c:
|
168 |
-
|
169 |
-
ccc = copy.deepcopy(cc)
|
170 |
-
|
171 |
-
if cc[3] != 9:
|
172 |
-
if cc[6] == trg_patch:
|
173 |
-
ccc[3] = 3
|
174 |
-
ccc[6] = 0
|
175 |
-
mixed_song.append(ccc)
|
176 |
-
|
177 |
-
else:
|
178 |
-
if cc[4] not in pitches:
|
179 |
-
ccc[3] = 0
|
180 |
-
ccc[6] = 0
|
181 |
-
mixed_song.append(ccc)
|
182 |
-
pitches.append(cc[4])
|
183 |
-
|
184 |
-
else:
|
185 |
-
mixed_song.append(ccc)
|
186 |
-
|
187 |
-
if input_remove_drums:
|
188 |
-
mixed_song = [e for e in mixed_song if e[3] != 9]
|
189 |
|
190 |
-
if input_output_tempo == 'Mix':
|
191 |
|
192 |
-
time_k = mel_avg_time / mix_avg_time
|
193 |
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
time_k = mel_avg_time / mix_mel_avg_time
|
199 |
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
203 |
-
mixed_song = TMIDIX.flip_enhanced_score_notes(mixed_song)
|
204 |
-
|
205 |
-
elif input_transform == 'Reverse Mix':
|
206 |
-
mixed_song = TMIDIX.reverse_enhanced_score_notes(mixed_song)
|
207 |
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
#===============================================================================
|
215 |
-
print('Rendering results...')
|
216 |
-
|
217 |
-
print('=' * 70)
|
218 |
-
print('Sample INTs', mixed_song[:5])
|
219 |
-
print('=' * 70)
|
220 |
-
|
221 |
-
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(mixed_song)
|
222 |
-
|
223 |
-
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
|
224 |
-
output_signature = 'Harmonic Melody MIDI Mixer',
|
225 |
-
output_file_name = fn1,
|
226 |
-
track_name='Project Los Angeles',
|
227 |
-
list_of_MIDI_patches=patches,
|
228 |
-
timings_multiplier=16
|
229 |
-
)
|
230 |
-
|
231 |
-
new_fn = fn1+'.mid'
|
232 |
-
|
233 |
-
|
234 |
-
audio = midi_to_colab_audio(new_fn,
|
235 |
-
soundfont_path=soundfont,
|
236 |
-
sample_rate=16000,
|
237 |
-
volume_scale=10,
|
238 |
-
output_for_gradio=True
|
239 |
-
)
|
240 |
-
|
241 |
-
print('Done!')
|
242 |
-
print('=' * 70)
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
for o in output_score:
|
252 |
-
o[1] *= 16
|
253 |
-
o[2] *= 16
|
254 |
-
|
255 |
-
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi_title, return_plt=True)
|
256 |
-
|
257 |
-
print('Output MIDI file name:', output_midi)
|
258 |
-
print('Output MIDI title:', output_midi_title)
|
259 |
-
print('Output MIDI summary:', MIDI_Summary)
|
260 |
-
print('=' * 70)
|
261 |
-
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
print('-' * 70)
|
266 |
-
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
267 |
-
print('-' * 70)
|
268 |
-
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
269 |
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
# =================================================================================================
|
273 |
|
|
|
6 |
import datetime
|
7 |
from pytz import timezone
|
8 |
|
9 |
+
import re
|
10 |
|
11 |
import gradio as gr
|
12 |
|
|
|
18 |
|
19 |
import matplotlib.pyplot as plt
|
20 |
|
21 |
+
#=====================================================================================
|
22 |
|
23 |
+
def parsons_code_to_tokens(parsons_code_str):
|
24 |
+
|
25 |
+
tokens = [388]
|
26 |
+
|
27 |
+
for chr in parsons_code_str[1:]:
|
28 |
+
|
29 |
+
if chr == 'D':
|
30 |
+
tokens.extend([385])
|
31 |
+
|
32 |
+
elif chr == 'R':
|
33 |
+
tokens.extend([386])
|
34 |
+
|
35 |
+
elif chr == 'U':
|
36 |
+
tokens.extend([387])
|
37 |
+
|
38 |
+
return tokens
|
39 |
+
|
40 |
+
#====================================================================================
|
41 |
|
42 |
def Generate_Melody(input_parsons_code,
|
43 |
input_first_note_duration,
|
|
|
48 |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
49 |
start_time = reqtime.time()
|
50 |
|
51 |
+
print('=' * 70)
|
52 |
print('Requested settings:')
|
53 |
print('-' * 70)
|
54 |
print('Parsons code:', input_parsons_code)
|
55 |
print('First note duration:', input_first_note_duration)
|
56 |
print('First note MIDI pitch:', iinput_first_note_MIDI_pitch)
|
57 |
+
print('=' * 70)
|
58 |
|
59 |
#===============================================================================
|
60 |
+
|
61 |
+
print('Instantiating Parsons Code Melody Transformer model...')
|
62 |
+
|
63 |
+
SEQ_LEN = 322
|
64 |
+
PAD_IDX = 392
|
65 |
|
66 |
+
model = TransformerWrapper(
|
67 |
+
num_tokens = PAD_IDX+1,
|
68 |
+
max_seq_len = SEQ_LEN,
|
69 |
+
attn_layers = Decoder(dim = 1024,
|
70 |
+
depth = 4,
|
71 |
+
heads = 8,
|
72 |
+
rotary_pos_emb = True,
|
73 |
+
attn_flash = True
|
74 |
+
)
|
75 |
+
)
|
76 |
|
77 |
+
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
|
78 |
|
79 |
+
print('=' * 70)
|
80 |
+
print('Loading model checkpoint...')
|
81 |
|
82 |
+
model_path = 'Parsons_Code_Melody_Transformer_Trained_Model_13786_steps_0.3058_loss_0.8819_acc.pth'
|
83 |
+
|
84 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
model.cpu()
|
87 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
dtype = torch.bfloat16
|
90 |
+
|
91 |
+
ctx = torch.amp.autocast(device_type='cpu', dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
print('Done!')
|
94 |
+
print('=' * 70)
|
95 |
|
96 |
+
#===============================================================================
|
|
|
|
|
97 |
|
98 |
+
print('Prepping Parsons code string...')
|
99 |
|
100 |
+
td_str = '*DUDUA'
|
101 |
+
|
102 |
+
td_str = re.sub('[^*DRU]', '', td_str)
|
103 |
+
|
104 |
+
print(len(td_str))
|
105 |
+
print('=' * 70)
|
106 |
+
|
107 |
+
if '*' in td_str and len(td_str) > 1:
|
108 |
+
code_mult = (64 // len(td_str[1:]))+1
|
109 |
+
mult_code = ('*' + (td_str[1:] * code_mult))[:64]
|
110 |
+
|
111 |
+
else:
|
112 |
+
mult_code = '*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU'
|
113 |
|
114 |
+
print('Done!')
|
115 |
+
print('=' * 70)
|
116 |
|
117 |
+
#===============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
119 |
|
|
|
120 |
|
121 |
+
#===============================================================================
|
122 |
+
print('Rendering results...')
|
123 |
+
|
124 |
+
print('=' * 70)
|
125 |
+
print('Sample INTs', mixed_song[:5])
|
126 |
+
print('=' * 70)
|
127 |
+
|
128 |
+
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(mixed_song)
|
129 |
|
130 |
+
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
|
131 |
+
output_signature = 'Harmonic Melody MIDI Mixer',
|
132 |
+
output_file_name = fn1,
|
133 |
+
track_name='Project Los Angeles',
|
134 |
+
list_of_MIDI_patches=patches,
|
135 |
+
timings_multiplier=16
|
136 |
+
)
|
137 |
+
|
138 |
+
new_fn = fn1+'.mid'
|
139 |
|
|
|
140 |
|
141 |
+
audio = midi_to_colab_audio(new_fn,
|
142 |
+
soundfont_path=soundfont,
|
143 |
+
sample_rate=16000,
|
144 |
+
volume_scale=10,
|
145 |
+
output_for_gradio=True
|
146 |
+
)
|
147 |
+
|
148 |
+
print('Done!')
|
149 |
+
print('=' * 70)
|
150 |
|
151 |
+
#========================================================
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
output_midi_title = str(fn1)
|
154 |
+
output_midi_summary = str(MIDI_Summary)
|
155 |
+
output_midi = str(new_fn)
|
156 |
+
output_audio = (16000, audio)
|
157 |
|
158 |
+
for o in output_score:
|
159 |
+
o[1] *= 16
|
160 |
+
o[2] *= 16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi_title, return_plt=True)
|
163 |
+
|
164 |
+
print('Output MIDI file name:', output_midi)
|
165 |
+
print('Output MIDI title:', output_midi_title)
|
166 |
+
print('Output MIDI summary:', MIDI_Summary)
|
167 |
+
print('=' * 70)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
|
170 |
+
#========================================================
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
print('-' * 70)
|
173 |
+
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
174 |
+
print('-' * 70)
|
175 |
+
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
176 |
+
|
177 |
+
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
|
178 |
|
179 |
# =================================================================================================
|
180 |
|