|
|
|
|
|
|
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import statistics |
|
import re |
|
import tqdm |
|
|
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Popular Hook Transformer') |
|
print('=' * 70) |
|
|
|
print('Loading Popular Hook Transformer training data...') |
|
|
|
|
|
|
|
SEQ_LEN = 512 |
|
PAD_IDX = 918 |
|
DEVICE = 'cpu' |
|
|
|
|
|
|
|
def str_strip(string): |
|
return re.sub(r'[^A-Za-z-]+', '', string).rstrip('-') |
|
|
|
def mode_time(seq): |
|
return statistics.mode([t for t in seq if 0 < t < 128]) |
|
|
|
def mode_dur(seq): |
|
return statistics.mode([t-128 for t in seq if 128 < t < 256]) |
|
|
|
def mode_pitch(seq): |
|
return statistics.mode([t % 128 for t in seq if 256 < t < 512]) |
|
|
|
sections_dict = sorted(set([str_strip(s[2]).rstrip('-') for s in melody_chords_f])) |
|
|
|
train_data = [] |
|
|
|
for m in tqdm.tqdm(melody_chords_f): |
|
|
|
if 64 < len(m[5]) < 506: |
|
|
|
for tv in range(-3, 3): |
|
|
|
section = str_strip(m[2]) |
|
section_tok = sections_dict.index(section) |
|
|
|
score = [t+tv if 256 < t < 512 else t for t in m[5]] |
|
|
|
seq = [916] + [section_tok+512, mode_time(score)+532, mode_dur(score)+660, mode_pitch(score)+tv+788] |
|
|
|
seq += score |
|
|
|
seq += [917] |
|
|
|
seq = seq + [PAD_IDX] * (SEQ_LEN - len(seq)) |
|
|
|
train_data.append(seq) |
|
|
|
|
|
|
|
print('Done!') |
|
print('=' * 70) |
|
print('All data is good:', len(max(train_data, key=len)) == len(min(train_data, key=len))) |
|
print('=' * 70) |
|
print('Randomizing training data...') |
|
random.shuffle(train_data) |
|
print('Done!') |
|
print('=' * 70) |
|
print('Total length of training data:', len(train_data)) |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Loading Popular Hook Transformer pre-trained model...') |
|
print('=' * 70) |
|
|
|
print('Instantiating model...') |
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, |
|
depth = 4, |
|
heads = 32, |
|
rotary_pos_emb = True, |
|
attn_flash = True |
|
) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) |
|
|
|
print('=' * 70) |
|
print('Loading model checkpoint...') |
|
|
|
model_path = 'Popular_Hook_Transformer_Small_Trained_Model_10869_steps_0.2308_loss_0.9252_acc.pth' |
|
|
|
model.load_state_dict(torch.load(model_path)) |
|
|
|
print('=' * 70) |
|
|
|
model.to(DEVICE) |
|
model.eval() |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=torch.bfloat16) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
def Generate_POP_Section(input_parsons_code, |
|
input_first_note_duration, |
|
iinput_first_note_MIDI_pitch |
|
): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('=' * 70) |
|
print('Requested settings:') |
|
print('-' * 70) |
|
print('Parsons code:', input_parsons_code) |
|
print('First note duration:', input_first_note_duration) |
|
print('First note MIDI pitch:', iinput_first_note_MIDI_pitch) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
|
|
print('Generating melody...') |
|
|
|
|
|
|
|
part = 'chorus' |
|
mode_time = 10 |
|
mode_dur = 10 |
|
mode_pitch = 66 |
|
|
|
|
|
|
|
|
|
|
|
x = torch.LongTensor(seq).cuda() |
|
|
|
with ctx: |
|
out = model.generate(x, |
|
512, |
|
temperature=0.9, |
|
|
|
|
|
eos_token=917, |
|
return_prime=True, |
|
verbose=True) |
|
|
|
y = out.tolist()[0] |
|
|
|
song.extend(y) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
print('Rendering results...') |
|
|
|
print('=' * 70) |
|
print('Sample INTs', song[:5]) |
|
print('=' * 70) |
|
|
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 128: |
|
|
|
time += ss * 32 |
|
|
|
if 128 <= ss < 256: |
|
|
|
dur = (ss-128)* 32 |
|
|
|
if 256 <= ss < 512: |
|
|
|
pitch = (ss-256) % 128 |
|
cha = (ss-256) // 128 |
|
|
|
if cha == 0: |
|
channel = 3 |
|
vel = 110 |
|
patch = 40 |
|
|
|
else: |
|
channel = 0 |
|
vel = 80 |
|
patch = 0 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) |
|
|
|
fn1 = 'Popular-Hook-Transformer-Composition' |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Popular Hook Transformer', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles' |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = str(fn1) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI title:', output_midi_title) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_midi_title, output_midi, output_audio, output_plot |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
app = gr.Blocks() |
|
|
|
with app: |
|
|
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Popular Hook Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique POP music sections</h1>") |
|
gr.Markdown( |
|
"This is a demo for popular-hook MIDI Dataset\n\n" |
|
"Check out [popular-hook](https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook) on Hugging Face!\n\n" |
|
) |
|
|
|
gr.Markdown("## Select POP composition section to generate:") |
|
|
|
input_comp_section = gr.Dropdown(sections_dict + ['random'], label="Composition section", value='intro') |
|
|
|
gr.Markdown("## Select generation options:") |
|
|
|
input_mode_time = gr.Slider(0, 127, value=10, step=1, label="Composition mode time") |
|
input_mode_dur = gr.Slider(0, 127, value=15, step=1, label="Composition mode dur") |
|
input_mode_ptc = gr.Slider(0, 127, value=60, step=1, label="Composition mode pitch") |
|
|
|
run_btn = gr.Button("Generate", variant="primary") |
|
|
|
gr.Markdown("## Output results") |
|
|
|
output_midi_title = gr.Textbox(label="Output MIDI title") |
|
output_midi_summary = gr.Textbox(label="Output MIDI summary") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
run_event = run_btn.click(Generate_POP_Section, [input_comp_section, |
|
input_mode_time, |
|
input_mode_dur, |
|
input_mode_ptc |
|
], |
|
[output_midi_title, |
|
output_midi_summary, |
|
output_midi, |
|
output_audio, |
|
output_plot] |
|
) |
|
|
|
gr.Examples([["intro", 10, 15, 60], |
|
], |
|
[input_comp_section, |
|
input_mode_time, |
|
input_mode_dur, |
|
input_mode_ptc |
|
], |
|
[output_midi_title, |
|
output_midi_summary, |
|
output_midi, |
|
output_audio, |
|
output_plot], |
|
Generate_POP_Section, |
|
cache_examples=True, |
|
) |
|
|
|
app.queue().launch() |