File size: 9,346 Bytes
b43c9c0
7b78b2e
b43c9c0
 
 
7b78b2e
b43c9c0
 
7b78b2e
b43c9c0
 
 
676e005
 
fb87fc1
b43c9c0
 
 
 
 
676e005
 
b43c9c0
7b78b2e
b43c9c0
 
 
d3532ff
 
b43c9c0
 
70973b0
0952d52
70973b0
676e005
b43c9c0
 
7b78b2e
b43c9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
d3532ff
 
3b01d4f
0952d52
d3532ff
 
 
 
ecd57a7
d3532ff
 
 
 
 
352f237
 
2d9a4a0
 
 
 
 
 
e385b84
2d9a4a0
 
 
 
e385b84
2d9a4a0
 
 
e385b84
2d9a4a0
 
e385b84
2d9a4a0
 
 
d3532ff
 
 
 
 
 
 
 
 
573ea3b
 
 
d3532ff
 
 
 
 
 
 
573ea3b
 
 
 
d3532ff
 
 
2c613a5
b43c9c0
 
 
 
 
 
 
fd7b81e
2d9a4a0
 
 
 
b43c9c0
 
2d9a4a0
b43c9c0
 
 
66d8263
b43c9c0
a56e703
66d8263
2d9a4a0
66d8263
a56e703
b43c9c0
 
573ea3b
2d9a4a0
25992bf
573ea3b
2d9a4a0
b43c9c0
 
 
 
 
66d8263
f285af7
 
d052125
f285af7
 
 
 
2d9a4a0
b43c9c0
 
 
 
25992bf
b43c9c0
 
25992bf
 
 
 
 
 
 
 
 
 
 
 
 
 
2dcaa7d
25992bf
 
2dcaa7d
25992bf
 
 
 
 
 
 
 
 
 
139b81a
 
 
 
 
 
 
 
 
 
25992bf
 
b43c9c0
25992bf
b43c9c0
66d8263
25992bf
b43c9c0
 
e769851
 
b43c9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bd45f
352f237
 
 
 
b43c9c0
 
37eebe7
b43c9c0
 
 
 
 
 
 
 
2d9a4a0
b43c9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b78b2e
 
b43c9c0
 
7b78b2e
b43c9c0
 
 
 
 
 
dc2151f
e4ed439
573ea3b
dc2151f
 
b43c9c0
573ea3b
b43c9c0
00b11aa
66d8263
b43c9c0
 
 
 
d3532ff
2d9a4a0
fd7b81e
2d9a4a0
fd7b81e
 
 
 
676e005
b43c9c0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#==================================================================================
# https://huggingface.co/spaces/asigalov61/MIDI-Cores-Match
#==================================================================================

print('=' * 70)
print('MIDI Cores Match Gradio App')

print('=' * 70)
print('Loading core MIDI Cores Match modules...')

import os
import copy
import statistics
import random
from collections import Counter

import time as reqtime
import datetime
from pytz import timezone

import tqdm

print('=' * 70)
print('Loading main MIDI Cores Match modules...')

import TMIDIX

import numpy as np

from midi_to_colab_audio import midi_to_colab_audio

from huggingface_hub import hf_hub_download
from datasets import load_dataset

import gradio as gr

print('=' * 70)
print('Loading aux MIDI Cores Match modules...')

import matplotlib.pyplot as plt

print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)

#==================================================================================

SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'

#==================================================================================

print('=' * 70)

midi_cores_dataset = load_dataset("asigalov61/MIDI-Cores")

print('=' * 70)
print('Prepping MIDI cores data...')
print('=' * 70)

all_core_chords = np.array(midi_cores_dataset['train']['core_chords'])

print('=' * 70)
print('Done!')
print('=' * 70)

#==================================================================================

def load_midi(midi_file):

    print('Loading MIDI...')

    raw_score = TMIDIX.midi2single_track_ms_score(midi_file)
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    escore_notes = [e for e in escore_notes if e[6] < 80 or e[6] == 128]
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, sort_drums_last=True)
    
    zscore = TMIDIX.recalculate_score_timings(escore_notes)
    
    core_score, core_chords = TMIDIX.escore_notes_core(zscore)
    
    print('Done!')
    print('=' * 70)
    print('MIDI has', len(core_chords), 'chords')
    print('=' * 70)

    return core_chords

#==================================================================================

def find_max_exact_match(src, trg):
    """
    Find the row in the 2D trg array that has the maximum number of exact element matches with the 1D src array.

    Parameters:
    src (numpy.ndarray): 1D source array.
    trg (numpy.ndarray): 2D target array.

    Returns:
    tuple: A tuple containing:
        - int: Index of the row in trg with the maximum number of exact matches.
        - int: Number of matched elements in that row.
    """
    # Compare src with each row in trg and count exact matches
    match_counts = np.sum(trg == src, axis=1)
    
    # Find the index of the row with the maximum number of matches
    max_match_idx = np.argmax(match_counts)
    
    # Get the number of matched elements in the best-matching row
    num_matched_elements = match_counts[max_match_idx]
    
    return max_match_idx, num_matched_elements

#==================================================================================

def Match_Cores(input_midi):

    #===============================================================================
    
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    print('=' * 70)
    
    fn = os.path.basename(input_midi)
    fn1 = fn.split('.')[0]

    print('=' * 70)
    print('Requested settings:')
    print('=' * 70)
    print('Input MIDI file name:', fn)
   
    print('=' * 70)

    #===============================================================================

    src_core_chords = load_midi(input_midi.name)
    
    #===============================================================================
    
    print('Matching MIDI cores...')
    print('=' * 70)

    match_idx, num_matches = find_max_exact_match(src_core_chords, all_core_chords)

    print('MAX MATCH IDX', match_idx)
    print('NUM MATCHES', num_matches)

    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================

    print('Creating final MIDI score...')

    final_core_score = midi_cores_dataset['train'][int(match_idx)]['core_score']

    print('Done!')
    print('=' * 70)

    #===============================================================================    
    
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', final_core_score[:15])
    print('=' * 70)

    song_f = []
    
    if len(final_core_score) != 0:
    
        time = 0
        dur = 0
        vel = 90
        pitch = 0
        channel = 0
        patch = 0
    
        for m in final_core_score:
    
            if 0 <= m < 256:
                time += m
                
            elif 256 < m < 512:
                dur = (m-256)
    
            elif 512 <= m <= 640:
                pat = (m-512)

            elif 640 < m < 768:
                ptc = (m-640)

            elif 768 <= m <= 896:
                vel = (m-768)

                if pat != 128:
                    cha = pat // 8

                    if cha == 9:
                        cha += 1

                else:
                    cha = 9

                song_f.append(['note', time, dur, cha, ptc, vel, pat])
              
    output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)

    fn1 = "MIDI-Cores-Match-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
                                                              output_signature = 'MIDI Cores Match',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches,
                                                              timings_multiplier=16
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=SOUDFONT_PATH,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(output_score, 
                                      plot_title=output_midi,
                                      timings_multiplier=16,
                                      return_plt=True
                                     )

    print('Output MIDI file name:', output_midi)
    print('=' * 70)
    
    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_audio, output_plot, output_midi
    
#==================================================================================

PDT = timezone('US/Pacific')

print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)

#==================================================================================

with gr.Blocks() as demo:

    #==================================================================================

    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Cores Match</h1>")
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Match MIDI cores</h1>")
    gr.HTML("""            
            <p> 
                <a href="https://huggingface.co/spaces/asigalov61/MIDI-Cores-Match?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
                </a>
            </p>
            """)
    
    #==================================================================================

    gr.Markdown("## Upload source MIDI")
    gr.Markdown("### Source MIDI must have at least 128 chords")
    
    input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
    
    mix_btn = gr.Button("Match", variant="primary")

    gr.Markdown("## Mixing results")

    output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
    output_plot = gr.Plot(label="MIDI score plot")
    output_midi = gr.File(label="MIDI file", file_types=[".mid"])

    mix_btn.click(Match_Cores, 
                   [input_midi,
                   ], 
                   [output_audio,
                    output_plot,
                    output_midi                          
                   ]
                  )
 
#==================================================================================

demo.launch()

#==================================================================================