Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- midi_to_colab_audio.py +0 -0
- x_transformer_1_23_2.py +2474 -0
midi_to_colab_audio.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
x_transformer_1_23_2.py
ADDED
|
@@ -0,0 +1,2474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#===================================================================================================================
|
| 2 |
+
#
|
| 3 |
+
# X Trasformer Module
|
| 4 |
+
#
|
| 5 |
+
# Partial x-transformers code With useful modifications
|
| 6 |
+
#
|
| 7 |
+
# Version 1.0
|
| 8 |
+
#
|
| 9 |
+
# Original source code courtesy of lucidrains
|
| 10 |
+
# https://github.com/lucidrains/x-transformers
|
| 11 |
+
#
|
| 12 |
+
# Original source code retrieved on 10/10/2023
|
| 13 |
+
#
|
| 14 |
+
# Project Los Angeles
|
| 15 |
+
# Tegridy Code 2023
|
| 16 |
+
|
| 17 |
+
#===================================================================================================================
|
| 18 |
+
|
| 19 |
+
# Critical dependencies
|
| 20 |
+
#
|
| 21 |
+
# !pip install torch
|
| 22 |
+
# !pip install einops
|
| 23 |
+
|
| 24 |
+
#===================================================================================================================
|
| 25 |
+
|
| 26 |
+
from functools import partial
|
| 27 |
+
from typing import Optional, Tuple
|
| 28 |
+
|
| 29 |
+
import os
|
| 30 |
+
os.environ['USE_FLASH_ATTENTION'] = '1'
|
| 31 |
+
|
| 32 |
+
import torch
|
| 33 |
+
from torch import nn, einsum, Tensor
|
| 34 |
+
import torch.nn.functional as F
|
| 35 |
+
|
| 36 |
+
# Flash attention
|
| 37 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
| 38 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
| 39 |
+
|
| 40 |
+
from collections import namedtuple
|
| 41 |
+
from functools import wraps
|
| 42 |
+
from packaging import version
|
| 43 |
+
from dataclasses import dataclass
|
| 44 |
+
|
| 45 |
+
from einops import rearrange, repeat
|
| 46 |
+
|
| 47 |
+
# constants
|
| 48 |
+
|
| 49 |
+
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
|
| 50 |
+
|
| 51 |
+
@dataclass
|
| 52 |
+
class Intermediates:
|
| 53 |
+
qk_similarities: Optional[Tensor] = None
|
| 54 |
+
pre_softmax_attn: Optional[Tensor] = None
|
| 55 |
+
post_softmax_attn: Optional[Tensor] = None
|
| 56 |
+
cached_kv: Optional[Tuple[Tensor, Tensor]] = None
|
| 57 |
+
|
| 58 |
+
def to_tuple(self):
|
| 59 |
+
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)
|
| 60 |
+
|
| 61 |
+
# helpers
|
| 62 |
+
|
| 63 |
+
def exists(val):
|
| 64 |
+
return val is not None
|
| 65 |
+
|
| 66 |
+
def default(val, d):
|
| 67 |
+
return val if exists(val) else d
|
| 68 |
+
|
| 69 |
+
def compact(arr):
|
| 70 |
+
return [*filter(exists, arr)]
|
| 71 |
+
|
| 72 |
+
def once(fn):
|
| 73 |
+
called = False
|
| 74 |
+
@wraps(fn)
|
| 75 |
+
def inner(x):
|
| 76 |
+
nonlocal called
|
| 77 |
+
if called:
|
| 78 |
+
return
|
| 79 |
+
called = True
|
| 80 |
+
return fn(x)
|
| 81 |
+
return inner
|
| 82 |
+
|
| 83 |
+
print_once = once(print)
|
| 84 |
+
|
| 85 |
+
# functions for creating causal mask
|
| 86 |
+
# need a special one for onnx cpu (no support for .triu)
|
| 87 |
+
|
| 88 |
+
def create_causal_mask(i, j, device):
|
| 89 |
+
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
|
| 90 |
+
|
| 91 |
+
def onnx_create_causal_mask(i, j, device):
|
| 92 |
+
r = torch.arange(i, device = device)
|
| 93 |
+
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j')
|
| 94 |
+
causal_mask = F.pad(causal_mask, (j - i, 0), value = False)
|
| 95 |
+
return causal_mask
|
| 96 |
+
|
| 97 |
+
# main class
|
| 98 |
+
|
| 99 |
+
class Attend(nn.Module):
|
| 100 |
+
def __init__(
|
| 101 |
+
self,
|
| 102 |
+
*,
|
| 103 |
+
dropout = 0.,
|
| 104 |
+
causal = False,
|
| 105 |
+
heads = None,
|
| 106 |
+
talking_heads = False,
|
| 107 |
+
sparse_topk = None,
|
| 108 |
+
scale = None,
|
| 109 |
+
qk_norm = False,
|
| 110 |
+
flash = False,
|
| 111 |
+
add_zero_kv = False,
|
| 112 |
+
onnxable = False
|
| 113 |
+
):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.scale = scale
|
| 116 |
+
self.qk_norm = qk_norm
|
| 117 |
+
|
| 118 |
+
self.causal = causal
|
| 119 |
+
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask
|
| 120 |
+
|
| 121 |
+
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax
|
| 122 |
+
|
| 123 |
+
self.dropout = dropout
|
| 124 |
+
self.attn_dropout = nn.Dropout(dropout)
|
| 125 |
+
|
| 126 |
+
# talking heads
|
| 127 |
+
|
| 128 |
+
assert not (flash and talking_heads), 'talking heads not compatible with flash attention'
|
| 129 |
+
|
| 130 |
+
self.talking_heads = talking_heads
|
| 131 |
+
if talking_heads:
|
| 132 |
+
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
|
| 133 |
+
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
|
| 134 |
+
|
| 135 |
+
# sparse topk
|
| 136 |
+
|
| 137 |
+
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention'
|
| 138 |
+
self.sparse_topk = sparse_topk
|
| 139 |
+
|
| 140 |
+
# add a key / value token composed of zeros
|
| 141 |
+
# in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html
|
| 142 |
+
|
| 143 |
+
self.add_zero_kv = add_zero_kv
|
| 144 |
+
|
| 145 |
+
# flash attention
|
| 146 |
+
|
| 147 |
+
self.flash = flash
|
| 148 |
+
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
|
| 149 |
+
|
| 150 |
+
# determine efficient attention configs for cuda and cpu
|
| 151 |
+
|
| 152 |
+
self.cpu_config = EfficientAttentionConfig(True, True, True)
|
| 153 |
+
self.cuda_config = None
|
| 154 |
+
|
| 155 |
+
if not torch.cuda.is_available() or not flash:
|
| 156 |
+
return
|
| 157 |
+
|
| 158 |
+
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
| 159 |
+
|
| 160 |
+
major, minor = device_properties.major, device_properties.minor
|
| 161 |
+
|
| 162 |
+
if (major, minor) == (8, 0):
|
| 163 |
+
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
|
| 164 |
+
self.cuda_config = EfficientAttentionConfig(True, False, False)
|
| 165 |
+
elif (major, minor) == (9, 0):
|
| 166 |
+
print_once('H100 GPU detected, using flash attention')
|
| 167 |
+
self.cuda_config = EfficientAttentionConfig(True, False, False)
|
| 168 |
+
else:
|
| 169 |
+
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
|
| 170 |
+
self.cuda_config = EfficientAttentionConfig(False, True, True)
|
| 171 |
+
|
| 172 |
+
def flash_attn(
|
| 173 |
+
self,
|
| 174 |
+
q, k, v,
|
| 175 |
+
mask = None,
|
| 176 |
+
attn_bias = None
|
| 177 |
+
):
|
| 178 |
+
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
|
| 179 |
+
|
| 180 |
+
# Recommended for multi-query single-key-value attention by Tri Dao
|
| 181 |
+
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
| 182 |
+
|
| 183 |
+
if k.ndim == 3:
|
| 184 |
+
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
|
| 185 |
+
|
| 186 |
+
if v.ndim == 3:
|
| 187 |
+
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
|
| 188 |
+
|
| 189 |
+
# handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention
|
| 190 |
+
|
| 191 |
+
if self.qk_norm:
|
| 192 |
+
default_scale = q.shape[-1] ** -0.5
|
| 193 |
+
q = q * (self.scale / default_scale)
|
| 194 |
+
|
| 195 |
+
# Check if mask exists and expand to compatible shape
|
| 196 |
+
# The mask is B L, so it would have to be expanded to B H N L
|
| 197 |
+
|
| 198 |
+
causal = self.causal
|
| 199 |
+
|
| 200 |
+
# in the case of kv caching with one token (q_len == 1), just turn off causal masking
|
| 201 |
+
# in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there
|
| 202 |
+
|
| 203 |
+
if q_len == 1 and causal:
|
| 204 |
+
causal = False
|
| 205 |
+
|
| 206 |
+
# expand key padding mask
|
| 207 |
+
|
| 208 |
+
if exists(mask):
|
| 209 |
+
assert mask.ndim == 4
|
| 210 |
+
mask = mask.expand(batch, heads, q_len, k_len)
|
| 211 |
+
|
| 212 |
+
# handle kv cache - this should be bypassable in updated flash attention 2
|
| 213 |
+
|
| 214 |
+
if k_len > q_len and causal:
|
| 215 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
| 216 |
+
if not exists(mask):
|
| 217 |
+
mask = ~causal_mask
|
| 218 |
+
else:
|
| 219 |
+
mask = mask & ~causal_mask
|
| 220 |
+
causal = False
|
| 221 |
+
|
| 222 |
+
# manually handle causal mask, if another mask was given
|
| 223 |
+
|
| 224 |
+
row_is_entirely_masked = None
|
| 225 |
+
|
| 226 |
+
if exists(mask) and causal:
|
| 227 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
| 228 |
+
mask = mask & ~causal_mask
|
| 229 |
+
|
| 230 |
+
# protect against an entire row being masked out
|
| 231 |
+
|
| 232 |
+
row_is_entirely_masked = ~mask.any(dim = -1)
|
| 233 |
+
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
|
| 234 |
+
|
| 235 |
+
causal = False
|
| 236 |
+
|
| 237 |
+
# handle alibi positional bias
|
| 238 |
+
# convert from bool to float
|
| 239 |
+
|
| 240 |
+
if exists(attn_bias):
|
| 241 |
+
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)
|
| 242 |
+
|
| 243 |
+
# if mask given, the mask would already contain the causal mask from above logic
|
| 244 |
+
# otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number
|
| 245 |
+
|
| 246 |
+
mask_value = -torch.finfo(q.dtype).max
|
| 247 |
+
|
| 248 |
+
if exists(mask):
|
| 249 |
+
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
|
| 250 |
+
elif causal:
|
| 251 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
| 252 |
+
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
|
| 253 |
+
causal = False
|
| 254 |
+
|
| 255 |
+
# scaled_dot_product_attention handles attn_mask either as bool or additive bias
|
| 256 |
+
# make it an additive bias here
|
| 257 |
+
|
| 258 |
+
mask = attn_bias
|
| 259 |
+
|
| 260 |
+
# Check if there is a compatible device for flash attention
|
| 261 |
+
|
| 262 |
+
config = self.cuda_config if is_cuda else self.cpu_config
|
| 263 |
+
|
| 264 |
+
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
|
| 265 |
+
|
| 266 |
+
# Legacy code...
|
| 267 |
+
# with torch.backends.cuda.sdp_kernel(enable_math=True, enable_mem_efficient=True):
|
| 268 |
+
# with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION]):
|
| 269 |
+
|
| 270 |
+
# PyTorch 2.3-2.4 SDPA backend code...
|
| 271 |
+
with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION]):
|
| 272 |
+
|
| 273 |
+
# New PyTorch 2.5 SDPA backend code:
|
| 274 |
+
# with sdpa_kernel(SDPBackend.CUDNN_ATTENTION):
|
| 275 |
+
|
| 276 |
+
out = F.scaled_dot_product_attention(
|
| 277 |
+
q, k, v,
|
| 278 |
+
attn_mask = mask,
|
| 279 |
+
dropout_p = self.dropout if self.training else 0.,
|
| 280 |
+
is_causal = causal
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# for a row that is entirely masked out, should zero out the output of that row token
|
| 284 |
+
|
| 285 |
+
if exists(row_is_entirely_masked):
|
| 286 |
+
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
|
| 287 |
+
|
| 288 |
+
return out, Intermediates()
|
| 289 |
+
|
| 290 |
+
def forward(
|
| 291 |
+
self,
|
| 292 |
+
q, k, v,
|
| 293 |
+
mask = None,
|
| 294 |
+
attn_bias = None,
|
| 295 |
+
prev_attn = None
|
| 296 |
+
):
|
| 297 |
+
"""
|
| 298 |
+
einstein notation
|
| 299 |
+
b - batch
|
| 300 |
+
h - heads
|
| 301 |
+
n, i, j - sequence length (base sequence length, source, target)
|
| 302 |
+
d - feature dimension
|
| 303 |
+
"""
|
| 304 |
+
|
| 305 |
+
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device
|
| 306 |
+
|
| 307 |
+
scale = default(self.scale, q.shape[-1] ** -0.5)
|
| 308 |
+
|
| 309 |
+
causal = self.causal
|
| 310 |
+
|
| 311 |
+
# handle kv cached decoding
|
| 312 |
+
|
| 313 |
+
if n == 1 and causal:
|
| 314 |
+
causal = False
|
| 315 |
+
|
| 316 |
+
# handle grouped multi-query attention
|
| 317 |
+
|
| 318 |
+
if kv_heads == 1:
|
| 319 |
+
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v))
|
| 320 |
+
elif kv_heads < heads:
|
| 321 |
+
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v))
|
| 322 |
+
|
| 323 |
+
# handle zero kv, as means for allowing network to attend to nothing
|
| 324 |
+
|
| 325 |
+
if self.add_zero_kv:
|
| 326 |
+
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v))
|
| 327 |
+
|
| 328 |
+
if exists(mask):
|
| 329 |
+
mask = F.pad(mask, (1, 0), value = True)
|
| 330 |
+
|
| 331 |
+
if exists(attn_bias):
|
| 332 |
+
attn_bias = F.pad(attn_bias, (1, 0), value = 0.)
|
| 333 |
+
|
| 334 |
+
if self.flash:
|
| 335 |
+
assert not exists(prev_attn), 'residual attention not compatible with flash attention'
|
| 336 |
+
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
|
| 337 |
+
|
| 338 |
+
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
|
| 339 |
+
|
| 340 |
+
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
|
| 341 |
+
|
| 342 |
+
if exists(prev_attn):
|
| 343 |
+
dots = dots + prev_attn
|
| 344 |
+
|
| 345 |
+
qk_similarities = dots.clone()
|
| 346 |
+
|
| 347 |
+
if self.talking_heads:
|
| 348 |
+
dots = self.pre_softmax_talking_heads(dots)
|
| 349 |
+
|
| 350 |
+
if exists(attn_bias):
|
| 351 |
+
dots = dots + attn_bias
|
| 352 |
+
|
| 353 |
+
i, j, dtype = *dots.shape[-2:], dots.dtype
|
| 354 |
+
|
| 355 |
+
mask_value = -torch.finfo(dots.dtype).max
|
| 356 |
+
|
| 357 |
+
if exists(self.sparse_topk) and self.sparse_topk < j:
|
| 358 |
+
top_values, _ = dots.topk(self.sparse_topk, dim = -1)
|
| 359 |
+
sparse_topk_mask = dots < top_values[..., -1:]
|
| 360 |
+
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask
|
| 361 |
+
|
| 362 |
+
if exists(mask):
|
| 363 |
+
dots = dots.masked_fill(~mask, mask_value)
|
| 364 |
+
|
| 365 |
+
if causal:
|
| 366 |
+
causal_mask = self.create_causal_mask(i, j, device = device)
|
| 367 |
+
dots = dots.masked_fill(causal_mask, mask_value)
|
| 368 |
+
|
| 369 |
+
pre_softmax_attn = dots.clone()
|
| 370 |
+
|
| 371 |
+
attn = self.attn_fn(dots, dim = -1)
|
| 372 |
+
attn = attn.type(dtype)
|
| 373 |
+
|
| 374 |
+
post_softmax_attn = attn.clone()
|
| 375 |
+
|
| 376 |
+
attn = self.attn_dropout(attn)
|
| 377 |
+
|
| 378 |
+
if self.talking_heads:
|
| 379 |
+
attn = self.post_softmax_talking_heads(attn)
|
| 380 |
+
|
| 381 |
+
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
|
| 382 |
+
|
| 383 |
+
intermediates = Intermediates(
|
| 384 |
+
qk_similarities = qk_similarities,
|
| 385 |
+
pre_softmax_attn = pre_softmax_attn,
|
| 386 |
+
post_softmax_attn = post_softmax_attn
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
return out, intermediates
|
| 390 |
+
|
| 391 |
+
#===================================================================================================================
|
| 392 |
+
|
| 393 |
+
from math import ceil, log
|
| 394 |
+
from typing import Optional, Union, Tuple, Callable
|
| 395 |
+
|
| 396 |
+
import torch
|
| 397 |
+
from torch import nn, Tensor
|
| 398 |
+
from torch.nn import Module
|
| 399 |
+
import torch.nn.functional as F
|
| 400 |
+
|
| 401 |
+
from einops import rearrange, pack, unpack
|
| 402 |
+
|
| 403 |
+
def exists(val):
|
| 404 |
+
return val is not None
|
| 405 |
+
|
| 406 |
+
def default(val, d):
|
| 407 |
+
return val if exists(val) else d
|
| 408 |
+
|
| 409 |
+
def identity(t, *args, **kwargs):
|
| 410 |
+
return t
|
| 411 |
+
|
| 412 |
+
def cast_tuple(t, length = 1):
|
| 413 |
+
return t if isinstance(t, tuple) else (t,) * length
|
| 414 |
+
|
| 415 |
+
def eval_decorator(fn):
|
| 416 |
+
def inner(self, *args, **kwargs):
|
| 417 |
+
was_training = self.training
|
| 418 |
+
self.eval()
|
| 419 |
+
out = fn(self, *args, **kwargs)
|
| 420 |
+
self.train(was_training)
|
| 421 |
+
return out
|
| 422 |
+
return inner
|
| 423 |
+
|
| 424 |
+
# for variable lengthed prefixes
|
| 425 |
+
|
| 426 |
+
def align_right(t, lens, pad_id = 0):
|
| 427 |
+
batch, seq_len, device, dtype = *t.shape, t.device, t.dtype
|
| 428 |
+
|
| 429 |
+
assert lens.ndim == 1 and lens.shape[0] == batch
|
| 430 |
+
assert lens.amax() <= seq_len
|
| 431 |
+
|
| 432 |
+
pad_lens = seq_len - lens
|
| 433 |
+
max_pad_len = pad_lens.amax()
|
| 434 |
+
|
| 435 |
+
batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None]
|
| 436 |
+
prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long)
|
| 437 |
+
|
| 438 |
+
t = F.pad(t, (max_pad_len, 0), value = 0)
|
| 439 |
+
offset = max_pad_len - pad_lens
|
| 440 |
+
|
| 441 |
+
aligned = t[batch_arange, prompt_len_arange + offset[..., None]]
|
| 442 |
+
return aligned
|
| 443 |
+
|
| 444 |
+
# nucleus
|
| 445 |
+
|
| 446 |
+
def top_p(logits, thres = 0.9):
|
| 447 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending = True)
|
| 448 |
+
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1)
|
| 449 |
+
|
| 450 |
+
sorted_indices_to_remove = cum_probs > thres
|
| 451 |
+
sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False)
|
| 452 |
+
|
| 453 |
+
sorted_logits[sorted_indices_to_remove] = float('-inf')
|
| 454 |
+
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
|
| 455 |
+
|
| 456 |
+
# topk
|
| 457 |
+
|
| 458 |
+
def top_k(logits, frac_num_tokens = 0.1, k = None):
|
| 459 |
+
num_tokens = logits.shape[-1]
|
| 460 |
+
|
| 461 |
+
k = default(k, ceil(frac_num_tokens * num_tokens))
|
| 462 |
+
k = min(k, num_tokens)
|
| 463 |
+
|
| 464 |
+
val, ind = torch.topk(logits, k)
|
| 465 |
+
probs = torch.full_like(logits, float('-inf'))
|
| 466 |
+
probs.scatter_(1, ind, val)
|
| 467 |
+
return probs
|
| 468 |
+
|
| 469 |
+
# top_a
|
| 470 |
+
|
| 471 |
+
def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02):
|
| 472 |
+
probs = F.softmax(logits, dim = -1)
|
| 473 |
+
max_probs = torch.amax(probs, dim = -1, keepdim = True)
|
| 474 |
+
limit = torch.pow(max_probs, min_p_pow) * min_p_ratio
|
| 475 |
+
return torch.where(probs < limit, float('-inf'), logits)
|
| 476 |
+
|
| 477 |
+
# contrastive decoding function
|
| 478 |
+
|
| 479 |
+
def contrastive_decode_fn(
|
| 480 |
+
expert_logits,
|
| 481 |
+
amateur_logits,
|
| 482 |
+
alpha = 0.1,
|
| 483 |
+
beta = 0.5
|
| 484 |
+
):
|
| 485 |
+
"""
|
| 486 |
+
Appendix A Algorithm 2
|
| 487 |
+
https://arxiv.org/abs/2309.09117
|
| 488 |
+
"""
|
| 489 |
+
|
| 490 |
+
cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True)
|
| 491 |
+
diffs = (1 + beta) * expert_logits - beta * amateur_logits
|
| 492 |
+
contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max)
|
| 493 |
+
return contrastive_decode_logits
|
| 494 |
+
|
| 495 |
+
# autoregressive wrapper class
|
| 496 |
+
|
| 497 |
+
class AutoregressiveWrapper(Module):
|
| 498 |
+
def __init__(
|
| 499 |
+
self,
|
| 500 |
+
net,
|
| 501 |
+
ignore_index = -100,
|
| 502 |
+
pad_value = 0,
|
| 503 |
+
mask_prob = 0.,
|
| 504 |
+
add_attn_z_loss = False
|
| 505 |
+
):
|
| 506 |
+
super().__init__()
|
| 507 |
+
self.pad_value = pad_value
|
| 508 |
+
self.ignore_index = ignore_index
|
| 509 |
+
|
| 510 |
+
self.net = net
|
| 511 |
+
self.max_seq_len = net.max_seq_len
|
| 512 |
+
|
| 513 |
+
# paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432
|
| 514 |
+
assert mask_prob < 1.
|
| 515 |
+
self.mask_prob = mask_prob
|
| 516 |
+
|
| 517 |
+
# whether to add router z-loss
|
| 518 |
+
self.add_attn_z_loss = add_attn_z_loss
|
| 519 |
+
|
| 520 |
+
@torch.inference_mode()
|
| 521 |
+
@eval_decorator
|
| 522 |
+
def generate(
|
| 523 |
+
self,
|
| 524 |
+
prompts,
|
| 525 |
+
seq_len,
|
| 526 |
+
eos_token = None,
|
| 527 |
+
temperature = 1.,
|
| 528 |
+
prompt_lens: Optional[Tensor] = None,
|
| 529 |
+
filter_logits_fn: Callable = top_k,
|
| 530 |
+
restrict_to_max_seq_len = True,
|
| 531 |
+
amateur_model: Optional[Union[Module, Tuple[Module]]] = None,
|
| 532 |
+
filter_kwargs: dict = dict(),
|
| 533 |
+
contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict(
|
| 534 |
+
beta = 0.5,
|
| 535 |
+
alpha = 0.1
|
| 536 |
+
),
|
| 537 |
+
cache_kv = True,
|
| 538 |
+
verbose=True,
|
| 539 |
+
return_prime=False,
|
| 540 |
+
**kwargs
|
| 541 |
+
):
|
| 542 |
+
max_seq_len, device = self.max_seq_len, prompts.device
|
| 543 |
+
|
| 544 |
+
prompts, ps = pack([prompts], '* n')
|
| 545 |
+
|
| 546 |
+
b, t = prompts.shape
|
| 547 |
+
|
| 548 |
+
# handle variable lengthed prompts (prefixes)
|
| 549 |
+
|
| 550 |
+
seq_start_pos = None
|
| 551 |
+
if exists(prompt_lens):
|
| 552 |
+
prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value)
|
| 553 |
+
seq_start_pos = t - prompt_lens
|
| 554 |
+
|
| 555 |
+
# output from which sampled tokens appended to
|
| 556 |
+
|
| 557 |
+
out = prompts
|
| 558 |
+
|
| 559 |
+
if verbose:
|
| 560 |
+
print("Generating sequence of max length:", seq_len)
|
| 561 |
+
|
| 562 |
+
# kv caches
|
| 563 |
+
|
| 564 |
+
cache = None
|
| 565 |
+
|
| 566 |
+
# if doing contrastive decoding, turn off filter automatically
|
| 567 |
+
|
| 568 |
+
if exists(amateur_model):
|
| 569 |
+
amateur_model = cast_tuple(amateur_model)
|
| 570 |
+
contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs)
|
| 571 |
+
|
| 572 |
+
assert len(amateur_model) == len(contrastive_decode_kwargs)
|
| 573 |
+
|
| 574 |
+
amateur_caches = [None] * len(amateur_model)
|
| 575 |
+
filter_logits_fn = identity
|
| 576 |
+
|
| 577 |
+
for i, module in enumerate(amateur_model):
|
| 578 |
+
if isinstance(module, AutoregressiveWrapper):
|
| 579 |
+
amateur_model[i] = module.net
|
| 580 |
+
|
| 581 |
+
module.eval()
|
| 582 |
+
|
| 583 |
+
# sampling up to seq_len
|
| 584 |
+
|
| 585 |
+
for sl in range(seq_len):
|
| 586 |
+
|
| 587 |
+
if restrict_to_max_seq_len:
|
| 588 |
+
x = out[:, -max_seq_len:]
|
| 589 |
+
|
| 590 |
+
if exists(cache):
|
| 591 |
+
for inter in cache.attn_intermediates:
|
| 592 |
+
inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv]
|
| 593 |
+
|
| 594 |
+
logits, new_cache = self.net(
|
| 595 |
+
x,
|
| 596 |
+
return_intermediates = True,
|
| 597 |
+
cache = cache,
|
| 598 |
+
seq_start_pos = seq_start_pos,
|
| 599 |
+
**kwargs
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
if cache_kv and self.net.can_cache_kv:
|
| 603 |
+
cache = new_cache
|
| 604 |
+
|
| 605 |
+
logits = logits[:, -1]
|
| 606 |
+
|
| 607 |
+
# handle contrastive decoding, Li et al.
|
| 608 |
+
# https://arxiv.org/abs/2210.15097
|
| 609 |
+
|
| 610 |
+
if exists(amateur_model):
|
| 611 |
+
for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)):
|
| 612 |
+
amateur_logits, next_amateur_cache = amateur(
|
| 613 |
+
x,
|
| 614 |
+
return_intermediates = True,
|
| 615 |
+
cache = amateur_cache,
|
| 616 |
+
seq_start_pos = seq_start_pos,
|
| 617 |
+
**kwargs
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
amateur_logits = amateur_logits[:, -1]
|
| 621 |
+
|
| 622 |
+
assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model'
|
| 623 |
+
logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs)
|
| 624 |
+
|
| 625 |
+
if cache_kv and amateur.can_cache_kv:
|
| 626 |
+
amateur_caches[i] = next_amateur_cache
|
| 627 |
+
|
| 628 |
+
# filter by top_k, top_p (nucleus), top_a, or custom
|
| 629 |
+
|
| 630 |
+
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
|
| 631 |
+
|
| 632 |
+
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
| 633 |
+
|
| 634 |
+
sample = torch.multinomial(probs, 1)
|
| 635 |
+
|
| 636 |
+
out = torch.cat((out, sample), dim=-1)
|
| 637 |
+
|
| 638 |
+
if verbose:
|
| 639 |
+
if sl % 32 == 0:
|
| 640 |
+
print(sl, '/', seq_len)
|
| 641 |
+
|
| 642 |
+
if exists(eos_token):
|
| 643 |
+
is_eos_tokens = (out == eos_token)
|
| 644 |
+
|
| 645 |
+
if is_eos_tokens.any(dim = -1).all():
|
| 646 |
+
# mask out everything after the eos tokens
|
| 647 |
+
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
|
| 648 |
+
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
|
| 649 |
+
out = out.masked_fill(mask, self.pad_value)
|
| 650 |
+
|
| 651 |
+
if verbose:
|
| 652 |
+
print('Model called the end of sequence at:', sl, '/', seq_len)
|
| 653 |
+
|
| 654 |
+
break
|
| 655 |
+
|
| 656 |
+
if return_prime:
|
| 657 |
+
return out[:, :]
|
| 658 |
+
|
| 659 |
+
else:
|
| 660 |
+
return out[:, t:]
|
| 661 |
+
|
| 662 |
+
# out, = unpack(out, ps, '* n')
|
| 663 |
+
|
| 664 |
+
# return out
|
| 665 |
+
|
| 666 |
+
def compute_accuracy(self, logits, labels):
|
| 667 |
+
out = torch.argmax(logits, dim=-1)
|
| 668 |
+
out = out.flatten()
|
| 669 |
+
labels = labels.flatten()
|
| 670 |
+
|
| 671 |
+
mask = (labels != self.ignore_index) # can also be self.pad_value (your choice)
|
| 672 |
+
out = out[mask]
|
| 673 |
+
labels = labels[mask]
|
| 674 |
+
|
| 675 |
+
num_right = (out == labels)
|
| 676 |
+
num_right = torch.sum(num_right).type(torch.float32)
|
| 677 |
+
|
| 678 |
+
acc = num_right / len(labels)
|
| 679 |
+
return acc
|
| 680 |
+
|
| 681 |
+
def forward(self, x, **kwargs):
|
| 682 |
+
seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss
|
| 683 |
+
|
| 684 |
+
inp, target = x[:, :-1], x[:, 1:]
|
| 685 |
+
inp = torch.where(inp == ignore_index, self.pad_value, inp)
|
| 686 |
+
|
| 687 |
+
if self.mask_prob > 0.:
|
| 688 |
+
rand = torch.randn(inp.shape, device = x.device)
|
| 689 |
+
rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out
|
| 690 |
+
num_mask = min(int(seq * self.mask_prob), seq - 1)
|
| 691 |
+
indices = rand.topk(num_mask, dim = -1).indices
|
| 692 |
+
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool()
|
| 693 |
+
kwargs.update(self_attn_kv_mask = mask)
|
| 694 |
+
|
| 695 |
+
logits, cache = self.net(
|
| 696 |
+
inp,
|
| 697 |
+
return_intermediates = True,
|
| 698 |
+
return_attn_z_loss = add_attn_z_loss,
|
| 699 |
+
**kwargs
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
acc = self.compute_accuracy(logits, target)
|
| 703 |
+
|
| 704 |
+
loss = F.cross_entropy(
|
| 705 |
+
rearrange(logits, 'b n c -> b c n'),
|
| 706 |
+
target,
|
| 707 |
+
ignore_index = ignore_index
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
if add_attn_z_loss:
|
| 711 |
+
loss = loss + cache.attn_z_loss
|
| 712 |
+
|
| 713 |
+
return loss, acc
|
| 714 |
+
|
| 715 |
+
#===============================================================================
|
| 716 |
+
|
| 717 |
+
import math
|
| 718 |
+
from random import random
|
| 719 |
+
|
| 720 |
+
import torch
|
| 721 |
+
from torch import nn, einsum, Tensor
|
| 722 |
+
import torch.nn.functional as F
|
| 723 |
+
|
| 724 |
+
from functools import partial, wraps
|
| 725 |
+
from inspect import isfunction
|
| 726 |
+
from collections import namedtuple
|
| 727 |
+
from dataclasses import dataclass
|
| 728 |
+
from typing import List, Callable, Optional
|
| 729 |
+
|
| 730 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
| 731 |
+
from einops.layers.torch import Rearrange
|
| 732 |
+
|
| 733 |
+
# constants
|
| 734 |
+
|
| 735 |
+
DEFAULT_DIM_HEAD = 64
|
| 736 |
+
|
| 737 |
+
@dataclass
|
| 738 |
+
class LayerIntermediates:
|
| 739 |
+
hiddens: Optional[List[Tensor]] = None
|
| 740 |
+
attn_intermediates: Optional[List[Intermediates]] = None
|
| 741 |
+
layer_hiddens: Optional[List[Tensor]] = None
|
| 742 |
+
attn_z_loss: Optional[Tensor] = None
|
| 743 |
+
mems: Optional[Tensor] = None
|
| 744 |
+
|
| 745 |
+
# helpers
|
| 746 |
+
|
| 747 |
+
def exists(val):
|
| 748 |
+
return val is not None
|
| 749 |
+
|
| 750 |
+
def default(val, d):
|
| 751 |
+
if exists(val):
|
| 752 |
+
return val
|
| 753 |
+
return d() if isfunction(d) else d
|
| 754 |
+
|
| 755 |
+
def cast_tuple(val, depth):
|
| 756 |
+
return val if isinstance(val, tuple) else (val,) * depth
|
| 757 |
+
|
| 758 |
+
def divisible_by(num, den):
|
| 759 |
+
return (num % den) == 0
|
| 760 |
+
|
| 761 |
+
def maybe(fn):
|
| 762 |
+
@wraps(fn)
|
| 763 |
+
def inner(x, *args, **kwargs):
|
| 764 |
+
if not exists(x):
|
| 765 |
+
return x
|
| 766 |
+
return fn(x, *args, **kwargs)
|
| 767 |
+
return inner
|
| 768 |
+
|
| 769 |
+
class always():
|
| 770 |
+
def __init__(self, val):
|
| 771 |
+
self.val = val
|
| 772 |
+
def __call__(self, *args, **kwargs):
|
| 773 |
+
return self.val
|
| 774 |
+
|
| 775 |
+
class not_equals():
|
| 776 |
+
def __init__(self, val):
|
| 777 |
+
self.val = val
|
| 778 |
+
def __call__(self, x, *args, **kwargs):
|
| 779 |
+
return x != self.val
|
| 780 |
+
|
| 781 |
+
class equals():
|
| 782 |
+
def __init__(self, val):
|
| 783 |
+
self.val = val
|
| 784 |
+
def __call__(self, x, *args, **kwargs):
|
| 785 |
+
return x == self.val
|
| 786 |
+
|
| 787 |
+
def Sequential(*modules):
|
| 788 |
+
return nn.Sequential(*filter(exists, modules))
|
| 789 |
+
|
| 790 |
+
# tensor helpers
|
| 791 |
+
|
| 792 |
+
def max_neg_value(tensor):
|
| 793 |
+
return -torch.finfo(tensor.dtype).max
|
| 794 |
+
|
| 795 |
+
def l2norm(t, groups = 1):
|
| 796 |
+
t = rearrange(t, '... (g d) -> ... g d', g = groups)
|
| 797 |
+
t = F.normalize(t, p = 2, dim = -1)
|
| 798 |
+
return rearrange(t, '... g d -> ... (g d)')
|
| 799 |
+
|
| 800 |
+
def pad_at_dim(t, pad, dim = -1, value = 0.):
|
| 801 |
+
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
| 802 |
+
zeros = ((0, 0) * dims_from_right)
|
| 803 |
+
return F.pad(t, (*zeros, *pad), value = value)
|
| 804 |
+
|
| 805 |
+
def or_reduce(masks):
|
| 806 |
+
head, *body = masks
|
| 807 |
+
for rest in body:
|
| 808 |
+
head = head | rest
|
| 809 |
+
return head
|
| 810 |
+
|
| 811 |
+
# auxiliary loss helpers
|
| 812 |
+
|
| 813 |
+
def calc_z_loss(
|
| 814 |
+
pre_softmax_attns: List[Tensor],
|
| 815 |
+
mask = None,
|
| 816 |
+
weight = 1.
|
| 817 |
+
):
|
| 818 |
+
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
|
| 819 |
+
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
|
| 820 |
+
# also used in PaLM as one of the measures
|
| 821 |
+
|
| 822 |
+
lse = 0.
|
| 823 |
+
|
| 824 |
+
for attn in pre_softmax_attns:
|
| 825 |
+
lse = lse + attn.logsumexp(dim = -1)
|
| 826 |
+
|
| 827 |
+
loss = torch.square(lse)
|
| 828 |
+
loss = reduce(loss, 'b h n -> b n', 'sum')
|
| 829 |
+
|
| 830 |
+
if not exists(mask):
|
| 831 |
+
return loss.mean() * weight
|
| 832 |
+
|
| 833 |
+
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
|
| 834 |
+
return loss * weight
|
| 835 |
+
|
| 836 |
+
# init helpers
|
| 837 |
+
|
| 838 |
+
def init_zero_(layer):
|
| 839 |
+
nn.init.constant_(layer.weight, 0.)
|
| 840 |
+
if exists(layer.bias):
|
| 841 |
+
nn.init.constant_(layer.bias, 0.)
|
| 842 |
+
|
| 843 |
+
# keyword argument helpers
|
| 844 |
+
|
| 845 |
+
def pick_and_pop(keys, d):
|
| 846 |
+
values = list(map(lambda key: d.pop(key), keys))
|
| 847 |
+
return dict(zip(keys, values))
|
| 848 |
+
|
| 849 |
+
def group_dict_by_key(cond, d):
|
| 850 |
+
return_val = [dict(),dict()]
|
| 851 |
+
for key in d.keys():
|
| 852 |
+
match = bool(cond(key))
|
| 853 |
+
ind = int(not match)
|
| 854 |
+
return_val[ind][key] = d[key]
|
| 855 |
+
return (*return_val,)
|
| 856 |
+
|
| 857 |
+
def string_begins_with(prefix, str):
|
| 858 |
+
return str.startswith(prefix)
|
| 859 |
+
|
| 860 |
+
def group_by_key_prefix(prefix, d):
|
| 861 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 862 |
+
|
| 863 |
+
def groupby_prefix_and_trim(prefix, d):
|
| 864 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 865 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
| 866 |
+
return kwargs_without_prefix, kwargs
|
| 867 |
+
|
| 868 |
+
# structured dropout, more effective than traditional attention dropouts
|
| 869 |
+
|
| 870 |
+
def dropout_seq(seq, mask, dropout):
|
| 871 |
+
b, n, *_, device = *seq.shape, seq.device
|
| 872 |
+
logits = torch.randn(b, n, device = device)
|
| 873 |
+
|
| 874 |
+
if exists(mask):
|
| 875 |
+
mask_value = max_neg_value(logits)
|
| 876 |
+
logits = logits.masked_fill(~mask, mask_value)
|
| 877 |
+
|
| 878 |
+
keep_prob = 1. - dropout
|
| 879 |
+
num_keep = max(1, int(keep_prob * n))
|
| 880 |
+
keep_indices = logits.topk(num_keep, dim = 1).indices
|
| 881 |
+
|
| 882 |
+
batch_indices = torch.arange(b, device = device)
|
| 883 |
+
batch_indices = rearrange(batch_indices, 'b -> b 1')
|
| 884 |
+
|
| 885 |
+
seq = seq[batch_indices, keep_indices]
|
| 886 |
+
|
| 887 |
+
if exists(mask):
|
| 888 |
+
seq_counts = mask.sum(dim = -1)
|
| 889 |
+
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
|
| 890 |
+
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
|
| 891 |
+
|
| 892 |
+
mask = mask[batch_indices, keep_indices] & keep_mask
|
| 893 |
+
|
| 894 |
+
return seq, mask
|
| 895 |
+
|
| 896 |
+
# activations
|
| 897 |
+
|
| 898 |
+
class ReluSquared(nn.Module):
|
| 899 |
+
def forward(self, x):
|
| 900 |
+
return F.relu(x) ** 2
|
| 901 |
+
|
| 902 |
+
# embedding
|
| 903 |
+
|
| 904 |
+
class TokenEmbedding(nn.Module):
|
| 905 |
+
def __init__(self, dim, num_tokens, l2norm_embed = False):
|
| 906 |
+
super().__init__()
|
| 907 |
+
self.l2norm_embed = l2norm_embed
|
| 908 |
+
self.emb = nn.Embedding(num_tokens, dim)
|
| 909 |
+
|
| 910 |
+
def forward(self, x):
|
| 911 |
+
token_emb = self.emb(x)
|
| 912 |
+
return l2norm(token_emb) if self.l2norm_embed else token_emb
|
| 913 |
+
|
| 914 |
+
# positional embeddings
|
| 915 |
+
|
| 916 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
| 917 |
+
def __init__(self, dim, max_seq_len, l2norm_embed = False):
|
| 918 |
+
super().__init__()
|
| 919 |
+
self.scale = dim ** -0.5 if not l2norm_embed else 1.
|
| 920 |
+
self.max_seq_len = max_seq_len
|
| 921 |
+
self.l2norm_embed = l2norm_embed
|
| 922 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
| 923 |
+
|
| 924 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
| 925 |
+
seq_len, device = x.shape[1], x.device
|
| 926 |
+
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
| 927 |
+
|
| 928 |
+
if not exists(pos):
|
| 929 |
+
pos = torch.arange(seq_len, device = device)
|
| 930 |
+
|
| 931 |
+
if exists(seq_start_pos):
|
| 932 |
+
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
| 933 |
+
|
| 934 |
+
pos_emb = self.emb(pos)
|
| 935 |
+
pos_emb = pos_emb * self.scale
|
| 936 |
+
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
|
| 937 |
+
|
| 938 |
+
class ScaledSinusoidalEmbedding(nn.Module):
|
| 939 |
+
def __init__(self, dim, theta = 10000):
|
| 940 |
+
super().__init__()
|
| 941 |
+
assert divisible_by(dim, 2)
|
| 942 |
+
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
| 943 |
+
|
| 944 |
+
half_dim = dim // 2
|
| 945 |
+
freq_seq = torch.arange(half_dim).float() / half_dim
|
| 946 |
+
inv_freq = theta ** -freq_seq
|
| 947 |
+
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
| 948 |
+
|
| 949 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
| 950 |
+
seq_len, device = x.shape[1], x.device
|
| 951 |
+
|
| 952 |
+
if not exists(pos):
|
| 953 |
+
pos = torch.arange(seq_len, device = device)
|
| 954 |
+
|
| 955 |
+
if exists(seq_start_pos):
|
| 956 |
+
pos = pos - seq_start_pos[..., None]
|
| 957 |
+
|
| 958 |
+
emb = einsum('i, j -> i j', pos, self.inv_freq)
|
| 959 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
| 960 |
+
return emb * self.scale
|
| 961 |
+
|
| 962 |
+
class RelativePositionBias(nn.Module):
|
| 963 |
+
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
|
| 964 |
+
super().__init__()
|
| 965 |
+
self.scale = scale
|
| 966 |
+
self.causal = causal
|
| 967 |
+
self.num_buckets = num_buckets
|
| 968 |
+
self.max_distance = max_distance
|
| 969 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
|
| 970 |
+
|
| 971 |
+
@staticmethod
|
| 972 |
+
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
|
| 973 |
+
ret = 0
|
| 974 |
+
n = -relative_position
|
| 975 |
+
if not causal:
|
| 976 |
+
num_buckets //= 2
|
| 977 |
+
ret += (n < 0).long() * num_buckets
|
| 978 |
+
n = torch.abs(n)
|
| 979 |
+
else:
|
| 980 |
+
n = torch.max(n, torch.zeros_like(n))
|
| 981 |
+
|
| 982 |
+
max_exact = num_buckets // 2
|
| 983 |
+
is_small = n < max_exact
|
| 984 |
+
|
| 985 |
+
val_if_large = max_exact + (
|
| 986 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
| 987 |
+
).long()
|
| 988 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
| 989 |
+
|
| 990 |
+
ret += torch.where(is_small, n, val_if_large)
|
| 991 |
+
return ret
|
| 992 |
+
|
| 993 |
+
@property
|
| 994 |
+
def device(self):
|
| 995 |
+
return next(self.parameters()).device
|
| 996 |
+
|
| 997 |
+
def forward(self, i, j):
|
| 998 |
+
device = self.device
|
| 999 |
+
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
|
| 1000 |
+
k_pos = torch.arange(j, dtype = torch.long, device = device)
|
| 1001 |
+
rel_pos = k_pos[None, :] - q_pos[:, None]
|
| 1002 |
+
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
| 1003 |
+
values = self.relative_attention_bias(rp_bucket)
|
| 1004 |
+
bias = rearrange(values, 'i j h -> h i j')
|
| 1005 |
+
return bias * self.scale
|
| 1006 |
+
|
| 1007 |
+
class DynamicPositionBias(nn.Module):
|
| 1008 |
+
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
|
| 1009 |
+
super().__init__()
|
| 1010 |
+
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
|
| 1011 |
+
self.log_distance = log_distance
|
| 1012 |
+
|
| 1013 |
+
self.mlp = nn.ModuleList([])
|
| 1014 |
+
|
| 1015 |
+
self.mlp.append(Sequential(
|
| 1016 |
+
nn.Linear(1, dim),
|
| 1017 |
+
nn.LayerNorm(dim) if norm else None,
|
| 1018 |
+
nn.SiLU()
|
| 1019 |
+
))
|
| 1020 |
+
|
| 1021 |
+
for _ in range(depth - 1):
|
| 1022 |
+
self.mlp.append(Sequential(
|
| 1023 |
+
nn.Linear(dim, dim),
|
| 1024 |
+
nn.LayerNorm(dim) if norm else None,
|
| 1025 |
+
nn.SiLU()
|
| 1026 |
+
))
|
| 1027 |
+
|
| 1028 |
+
self.mlp.append(nn.Linear(dim, heads))
|
| 1029 |
+
|
| 1030 |
+
@property
|
| 1031 |
+
def device(self):
|
| 1032 |
+
return next(self.parameters()).device
|
| 1033 |
+
|
| 1034 |
+
def forward(self, i, j):
|
| 1035 |
+
assert i == j
|
| 1036 |
+
n, device = j, self.device
|
| 1037 |
+
|
| 1038 |
+
# get the (n x n) matrix of distances
|
| 1039 |
+
seq_arange = torch.arange(n, device = device)
|
| 1040 |
+
context_arange = torch.arange(n, device = device)
|
| 1041 |
+
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
|
| 1042 |
+
indices += (n - 1)
|
| 1043 |
+
|
| 1044 |
+
# input to continuous positions MLP
|
| 1045 |
+
pos = torch.arange(-n + 1, n, device = device).float()
|
| 1046 |
+
pos = rearrange(pos, '... -> ... 1')
|
| 1047 |
+
|
| 1048 |
+
if self.log_distance:
|
| 1049 |
+
pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)
|
| 1050 |
+
|
| 1051 |
+
for layer in self.mlp:
|
| 1052 |
+
pos = layer(pos)
|
| 1053 |
+
|
| 1054 |
+
# get position biases
|
| 1055 |
+
bias = pos[indices]
|
| 1056 |
+
bias = rearrange(bias, 'i j h -> h i j')
|
| 1057 |
+
return bias
|
| 1058 |
+
|
| 1059 |
+
class AlibiPositionalBias(nn.Module):
|
| 1060 |
+
def __init__(self, heads, total_heads, **kwargs):
|
| 1061 |
+
super().__init__()
|
| 1062 |
+
self.heads = heads
|
| 1063 |
+
self.total_heads = total_heads
|
| 1064 |
+
|
| 1065 |
+
slopes = Tensor(self._get_slopes(heads))
|
| 1066 |
+
slopes = rearrange(slopes, 'h -> h 1 1')
|
| 1067 |
+
self.register_buffer('slopes', slopes, persistent = False)
|
| 1068 |
+
self.register_buffer('bias', None, persistent = False)
|
| 1069 |
+
|
| 1070 |
+
def get_bias(self, i, j, device):
|
| 1071 |
+
i_arange = torch.arange(j - i, j, device = device)
|
| 1072 |
+
j_arange = torch.arange(j, device = device)
|
| 1073 |
+
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
|
| 1074 |
+
return bias
|
| 1075 |
+
|
| 1076 |
+
@staticmethod
|
| 1077 |
+
def _get_slopes(heads):
|
| 1078 |
+
def get_slopes_power_of_2(n):
|
| 1079 |
+
start = (2**(-2**-(math.log2(n)-3)))
|
| 1080 |
+
ratio = start
|
| 1081 |
+
return [start*ratio**i for i in range(n)]
|
| 1082 |
+
|
| 1083 |
+
if math.log2(heads).is_integer():
|
| 1084 |
+
return get_slopes_power_of_2(heads)
|
| 1085 |
+
|
| 1086 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
|
| 1087 |
+
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
|
| 1088 |
+
|
| 1089 |
+
@property
|
| 1090 |
+
def device(self):
|
| 1091 |
+
return next(self.buffers()).device
|
| 1092 |
+
|
| 1093 |
+
def forward(self, i, j):
|
| 1094 |
+
h, device = self.total_heads, self.device
|
| 1095 |
+
|
| 1096 |
+
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
|
| 1097 |
+
return self.bias[..., -i:, -j:]
|
| 1098 |
+
|
| 1099 |
+
bias = self.get_bias(i, j, device)
|
| 1100 |
+
bias = bias * self.slopes
|
| 1101 |
+
|
| 1102 |
+
num_heads_unalibied = h - bias.shape[0]
|
| 1103 |
+
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
|
| 1104 |
+
self.register_buffer('bias', bias, persistent = False)
|
| 1105 |
+
|
| 1106 |
+
return self.bias
|
| 1107 |
+
|
| 1108 |
+
class RotaryEmbedding(nn.Module):
|
| 1109 |
+
def __init__(
|
| 1110 |
+
self,
|
| 1111 |
+
dim,
|
| 1112 |
+
use_xpos = False,
|
| 1113 |
+
scale_base = 512,
|
| 1114 |
+
interpolation_factor = 1.,
|
| 1115 |
+
base = 10000,
|
| 1116 |
+
base_rescale_factor = 1.
|
| 1117 |
+
):
|
| 1118 |
+
super().__init__()
|
| 1119 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
| 1120 |
+
# has some connection to NTK literature
|
| 1121 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
| 1122 |
+
base *= base_rescale_factor ** (dim / (dim - 2))
|
| 1123 |
+
|
| 1124 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 1125 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 1126 |
+
|
| 1127 |
+
assert interpolation_factor >= 1.
|
| 1128 |
+
self.interpolation_factor = interpolation_factor
|
| 1129 |
+
|
| 1130 |
+
if not use_xpos:
|
| 1131 |
+
self.register_buffer('scale', None)
|
| 1132 |
+
return
|
| 1133 |
+
|
| 1134 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
| 1135 |
+
|
| 1136 |
+
self.scale_base = scale_base
|
| 1137 |
+
self.register_buffer('scale', scale)
|
| 1138 |
+
|
| 1139 |
+
def forward(self, seq_len):
|
| 1140 |
+
device = self.inv_freq.device
|
| 1141 |
+
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
|
| 1142 |
+
|
| 1143 |
+
t = t / self.interpolation_factor
|
| 1144 |
+
|
| 1145 |
+
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
| 1146 |
+
freqs = torch.cat((freqs, freqs), dim = -1)
|
| 1147 |
+
|
| 1148 |
+
if not exists(self.scale):
|
| 1149 |
+
return freqs, 1.
|
| 1150 |
+
|
| 1151 |
+
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
| 1152 |
+
scale = self.scale ** rearrange(power, 'n -> n 1')
|
| 1153 |
+
scale = torch.cat((scale, scale), dim = -1)
|
| 1154 |
+
|
| 1155 |
+
return freqs, scale
|
| 1156 |
+
|
| 1157 |
+
|
| 1158 |
+
def rotate_half(x):
|
| 1159 |
+
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
| 1160 |
+
x1, x2 = x.unbind(dim = -2)
|
| 1161 |
+
return torch.cat((-x2, x1), dim = -1)
|
| 1162 |
+
|
| 1163 |
+
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
| 1164 |
+
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
| 1165 |
+
freqs = freqs[-seq_len:, :]
|
| 1166 |
+
|
| 1167 |
+
if t.ndim == 4 and freqs.ndim == 3:
|
| 1168 |
+
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
| 1169 |
+
|
| 1170 |
+
# partial rotary embeddings, Wang et al. GPT-J
|
| 1171 |
+
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
| 1172 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
| 1173 |
+
return torch.cat((t, t_unrotated), dim = -1)
|
| 1174 |
+
|
| 1175 |
+
# norms
|
| 1176 |
+
|
| 1177 |
+
class Scale(nn.Module):
|
| 1178 |
+
def __init__(self, value, fn):
|
| 1179 |
+
super().__init__()
|
| 1180 |
+
self.value = value
|
| 1181 |
+
self.fn = fn
|
| 1182 |
+
|
| 1183 |
+
def forward(self, x, **kwargs):
|
| 1184 |
+
out = self.fn(x, **kwargs)
|
| 1185 |
+
scale_fn = lambda t: t * self.value
|
| 1186 |
+
|
| 1187 |
+
if not isinstance(out, tuple):
|
| 1188 |
+
return scale_fn(out)
|
| 1189 |
+
|
| 1190 |
+
return (scale_fn(out[0]), *out[1:])
|
| 1191 |
+
|
| 1192 |
+
class ScaleNorm(nn.Module):
|
| 1193 |
+
def __init__(self, dim, eps = 1e-5):
|
| 1194 |
+
super().__init__()
|
| 1195 |
+
self.eps = eps
|
| 1196 |
+
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
|
| 1197 |
+
|
| 1198 |
+
def forward(self, x):
|
| 1199 |
+
norm = torch.norm(x, dim = -1, keepdim = True)
|
| 1200 |
+
return x / norm.clamp(min = self.eps) * self.g
|
| 1201 |
+
|
| 1202 |
+
class RMSNorm(nn.Module):
|
| 1203 |
+
def __init__(self, dim):
|
| 1204 |
+
super().__init__()
|
| 1205 |
+
self.scale = dim ** 0.5
|
| 1206 |
+
self.g = nn.Parameter(torch.ones(dim))
|
| 1207 |
+
|
| 1208 |
+
def forward(self, x):
|
| 1209 |
+
return F.normalize(x, dim = -1) * self.scale * self.g
|
| 1210 |
+
|
| 1211 |
+
class SimpleRMSNorm(nn.Module):
|
| 1212 |
+
def __init__(self, dim):
|
| 1213 |
+
super().__init__()
|
| 1214 |
+
self.scale = dim ** 0.5
|
| 1215 |
+
|
| 1216 |
+
def forward(self, x):
|
| 1217 |
+
return F.normalize(x, dim = -1) * self.scale
|
| 1218 |
+
|
| 1219 |
+
# residual and residual gates
|
| 1220 |
+
|
| 1221 |
+
class Residual(nn.Module):
|
| 1222 |
+
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
|
| 1223 |
+
super().__init__()
|
| 1224 |
+
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
| 1225 |
+
self.scale_residual_constant = scale_residual_constant
|
| 1226 |
+
|
| 1227 |
+
def forward(self, x, residual):
|
| 1228 |
+
if exists(self.residual_scale):
|
| 1229 |
+
residual = residual * self.residual_scale
|
| 1230 |
+
|
| 1231 |
+
if self.scale_residual_constant != 1:
|
| 1232 |
+
residual = residual * self.scale_residual_constant
|
| 1233 |
+
|
| 1234 |
+
return x + residual
|
| 1235 |
+
|
| 1236 |
+
class GRUGating(nn.Module):
|
| 1237 |
+
def __init__(self, dim, scale_residual = False, **kwargs):
|
| 1238 |
+
super().__init__()
|
| 1239 |
+
self.gru = nn.GRUCell(dim, dim)
|
| 1240 |
+
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
| 1241 |
+
|
| 1242 |
+
def forward(self, x, residual):
|
| 1243 |
+
if exists(self.residual_scale):
|
| 1244 |
+
residual = residual * self.residual_scale
|
| 1245 |
+
|
| 1246 |
+
gated_output = self.gru(
|
| 1247 |
+
rearrange(x, 'b n d -> (b n) d'),
|
| 1248 |
+
rearrange(residual, 'b n d -> (b n) d')
|
| 1249 |
+
)
|
| 1250 |
+
|
| 1251 |
+
return gated_output.reshape_as(x)
|
| 1252 |
+
|
| 1253 |
+
# token shifting
|
| 1254 |
+
|
| 1255 |
+
def shift(t, amount, mask = None):
|
| 1256 |
+
if amount == 0:
|
| 1257 |
+
return t
|
| 1258 |
+
else:
|
| 1259 |
+
amount = min(amount, t.shape[1])
|
| 1260 |
+
|
| 1261 |
+
if exists(mask):
|
| 1262 |
+
t = t.masked_fill(~mask[..., None], 0.)
|
| 1263 |
+
|
| 1264 |
+
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)
|
| 1265 |
+
|
| 1266 |
+
class ShiftTokens(nn.Module):
|
| 1267 |
+
def __init__(self, shifts, fn):
|
| 1268 |
+
super().__init__()
|
| 1269 |
+
self.fn = fn
|
| 1270 |
+
self.shifts = tuple(shifts)
|
| 1271 |
+
|
| 1272 |
+
def forward(self, x, **kwargs):
|
| 1273 |
+
mask = kwargs.get('mask', None)
|
| 1274 |
+
shifts = self.shifts
|
| 1275 |
+
segments = len(shifts)
|
| 1276 |
+
feats_per_shift = x.shape[-1] // segments
|
| 1277 |
+
splitted = x.split(feats_per_shift, dim = -1)
|
| 1278 |
+
segments_to_shift, rest = splitted[:segments], splitted[segments:]
|
| 1279 |
+
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
|
| 1280 |
+
x = torch.cat((*segments_to_shift, *rest), dim = -1)
|
| 1281 |
+
return self.fn(x, **kwargs)
|
| 1282 |
+
|
| 1283 |
+
# feedforward
|
| 1284 |
+
|
| 1285 |
+
class GLU(nn.Module):
|
| 1286 |
+
def __init__(
|
| 1287 |
+
self,
|
| 1288 |
+
dim_in,
|
| 1289 |
+
dim_out,
|
| 1290 |
+
activation: Callable,
|
| 1291 |
+
mult_bias = False
|
| 1292 |
+
):
|
| 1293 |
+
super().__init__()
|
| 1294 |
+
self.act = activation
|
| 1295 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 1296 |
+
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.
|
| 1297 |
+
|
| 1298 |
+
def forward(self, x):
|
| 1299 |
+
x, gate = self.proj(x).chunk(2, dim = -1)
|
| 1300 |
+
return x * self.act(gate) * self.mult_bias
|
| 1301 |
+
|
| 1302 |
+
class FeedForward(nn.Module):
|
| 1303 |
+
def __init__(
|
| 1304 |
+
self,
|
| 1305 |
+
dim,
|
| 1306 |
+
dim_out = None,
|
| 1307 |
+
mult = 4,
|
| 1308 |
+
glu = False,
|
| 1309 |
+
glu_mult_bias = False,
|
| 1310 |
+
swish = False,
|
| 1311 |
+
relu_squared = False,
|
| 1312 |
+
post_act_ln = False,
|
| 1313 |
+
dropout = 0.,
|
| 1314 |
+
no_bias = False,
|
| 1315 |
+
zero_init_output = False
|
| 1316 |
+
):
|
| 1317 |
+
super().__init__()
|
| 1318 |
+
inner_dim = int(dim * mult)
|
| 1319 |
+
dim_out = default(dim_out, dim)
|
| 1320 |
+
|
| 1321 |
+
if relu_squared:
|
| 1322 |
+
activation = ReluSquared()
|
| 1323 |
+
elif swish:
|
| 1324 |
+
activation = nn.SiLU()
|
| 1325 |
+
else:
|
| 1326 |
+
activation = nn.GELU()
|
| 1327 |
+
|
| 1328 |
+
if glu:
|
| 1329 |
+
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
|
| 1330 |
+
else:
|
| 1331 |
+
project_in = nn.Sequential(
|
| 1332 |
+
nn.Linear(dim, inner_dim, bias = not no_bias),
|
| 1333 |
+
activation
|
| 1334 |
+
)
|
| 1335 |
+
|
| 1336 |
+
self.ff = Sequential(
|
| 1337 |
+
project_in,
|
| 1338 |
+
nn.LayerNorm(inner_dim) if post_act_ln else None,
|
| 1339 |
+
nn.Dropout(dropout),
|
| 1340 |
+
nn.Linear(inner_dim, dim_out, bias = not no_bias)
|
| 1341 |
+
)
|
| 1342 |
+
|
| 1343 |
+
# init last linear layer to 0
|
| 1344 |
+
if zero_init_output:
|
| 1345 |
+
init_zero_(self.ff[-1])
|
| 1346 |
+
|
| 1347 |
+
def forward(self, x):
|
| 1348 |
+
return self.ff(x)
|
| 1349 |
+
|
| 1350 |
+
# attention. it is all we need
|
| 1351 |
+
|
| 1352 |
+
class Attention(nn.Module):
|
| 1353 |
+
def __init__(
|
| 1354 |
+
self,
|
| 1355 |
+
dim,
|
| 1356 |
+
dim_head = DEFAULT_DIM_HEAD,
|
| 1357 |
+
heads = 8,
|
| 1358 |
+
causal = False,
|
| 1359 |
+
flash = False,
|
| 1360 |
+
talking_heads = False,
|
| 1361 |
+
head_scale = False,
|
| 1362 |
+
sparse_topk = None,
|
| 1363 |
+
num_mem_kv = 0,
|
| 1364 |
+
dropout = 0.,
|
| 1365 |
+
on_attn = False,
|
| 1366 |
+
gate_value_heads = False,
|
| 1367 |
+
gate_values = False,
|
| 1368 |
+
zero_init_output = False,
|
| 1369 |
+
max_attend_past = None,
|
| 1370 |
+
qk_norm = False,
|
| 1371 |
+
qk_norm_groups = 1,
|
| 1372 |
+
qk_norm_scale = 10,
|
| 1373 |
+
qk_norm_dim_scale = False,
|
| 1374 |
+
one_kv_head = False,
|
| 1375 |
+
kv_heads = None,
|
| 1376 |
+
shared_kv = False,
|
| 1377 |
+
value_dim_head = None,
|
| 1378 |
+
tensor_product = False, # https://arxiv.org/abs/2208.06061
|
| 1379 |
+
add_zero_kv = False, # same as add_zero_attn in pytorch
|
| 1380 |
+
rotary_embed_values = False,
|
| 1381 |
+
onnxable = False
|
| 1382 |
+
):
|
| 1383 |
+
super().__init__()
|
| 1384 |
+
self.scale = dim_head ** -0.5
|
| 1385 |
+
|
| 1386 |
+
self.heads = heads
|
| 1387 |
+
self.causal = causal
|
| 1388 |
+
self.max_attend_past = max_attend_past
|
| 1389 |
+
|
| 1390 |
+
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'
|
| 1391 |
+
|
| 1392 |
+
value_dim_head = default(value_dim_head, dim_head)
|
| 1393 |
+
kv_heads = default(kv_heads, heads)
|
| 1394 |
+
|
| 1395 |
+
kv_heads = 1 if one_kv_head else kv_heads
|
| 1396 |
+
assert divisible_by(heads, kv_heads)
|
| 1397 |
+
|
| 1398 |
+
self.kv_heads = kv_heads
|
| 1399 |
+
|
| 1400 |
+
q_dim = dim_head * heads
|
| 1401 |
+
k_dim = dim_head * kv_heads
|
| 1402 |
+
v_dim = value_dim_head * kv_heads
|
| 1403 |
+
out_dim = value_dim_head * heads
|
| 1404 |
+
|
| 1405 |
+
self.to_q = nn.Linear(dim, q_dim, bias = False)
|
| 1406 |
+
self.to_k = nn.Linear(dim, k_dim, bias = False)
|
| 1407 |
+
|
| 1408 |
+
# shared key / values, for further memory savings during inference
|
| 1409 |
+
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
|
| 1410 |
+
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None
|
| 1411 |
+
|
| 1412 |
+
# relations projection from tp-attention
|
| 1413 |
+
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None
|
| 1414 |
+
|
| 1415 |
+
# add GLU gating for aggregated values, from alphafold2
|
| 1416 |
+
self.to_v_gate = None
|
| 1417 |
+
if gate_values:
|
| 1418 |
+
self.to_v_gate = nn.Linear(dim, out_dim)
|
| 1419 |
+
nn.init.constant_(self.to_v_gate.weight, 0)
|
| 1420 |
+
nn.init.constant_(self.to_v_gate.bias, 10)
|
| 1421 |
+
|
| 1422 |
+
# add per head gating of the output values, from 'Attend to nothing' paper
|
| 1423 |
+
self.to_v_head_gate = None
|
| 1424 |
+
if gate_value_heads:
|
| 1425 |
+
self.to_v_head_gate = nn.Linear(dim, heads)
|
| 1426 |
+
nn.init.constant_(self.to_v_head_gate.weight, 0)
|
| 1427 |
+
nn.init.constant_(self.to_v_head_gate.bias, 10)
|
| 1428 |
+
|
| 1429 |
+
# cosine sim attention
|
| 1430 |
+
self.qk_norm = qk_norm
|
| 1431 |
+
self.qk_norm_groups = qk_norm_groups
|
| 1432 |
+
self.qk_norm_scale = qk_norm_scale
|
| 1433 |
+
|
| 1434 |
+
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
|
| 1435 |
+
self.qk_norm_dim_scale = qk_norm_dim_scale
|
| 1436 |
+
|
| 1437 |
+
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
|
| 1438 |
+
if qk_norm and qk_norm_dim_scale:
|
| 1439 |
+
self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
|
| 1440 |
+
self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
|
| 1441 |
+
|
| 1442 |
+
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
|
| 1443 |
+
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'
|
| 1444 |
+
|
| 1445 |
+
# attend class - includes core attention algorithm + talking heads
|
| 1446 |
+
|
| 1447 |
+
self.attend = Attend(
|
| 1448 |
+
heads = heads,
|
| 1449 |
+
causal = causal,
|
| 1450 |
+
talking_heads = talking_heads,
|
| 1451 |
+
dropout = dropout,
|
| 1452 |
+
sparse_topk = sparse_topk,
|
| 1453 |
+
qk_norm = qk_norm,
|
| 1454 |
+
scale = qk_norm_scale if qk_norm else self.scale,
|
| 1455 |
+
add_zero_kv = add_zero_kv,
|
| 1456 |
+
flash = flash,
|
| 1457 |
+
onnxable = onnxable
|
| 1458 |
+
)
|
| 1459 |
+
|
| 1460 |
+
# head scaling
|
| 1461 |
+
self.head_scale = head_scale
|
| 1462 |
+
if head_scale:
|
| 1463 |
+
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
|
| 1464 |
+
|
| 1465 |
+
# explicit topk sparse attention
|
| 1466 |
+
self.sparse_topk = sparse_topk
|
| 1467 |
+
|
| 1468 |
+
# add memory key / values
|
| 1469 |
+
self.num_mem_kv = num_mem_kv
|
| 1470 |
+
if num_mem_kv > 0:
|
| 1471 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
| 1472 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
| 1473 |
+
|
| 1474 |
+
# attention on attention
|
| 1475 |
+
self.attn_on_attn = on_attn
|
| 1476 |
+
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)
|
| 1477 |
+
|
| 1478 |
+
# whether to rotate positions into values, for absolute positions in addition to relative
|
| 1479 |
+
self.rotary_embed_values = rotary_embed_values
|
| 1480 |
+
|
| 1481 |
+
# init output projection 0
|
| 1482 |
+
if zero_init_output:
|
| 1483 |
+
init_zero_(self.to_out)
|
| 1484 |
+
|
| 1485 |
+
def forward(
|
| 1486 |
+
self,
|
| 1487 |
+
x,
|
| 1488 |
+
context = None,
|
| 1489 |
+
mask = None,
|
| 1490 |
+
context_mask = None,
|
| 1491 |
+
attn_mask = None,
|
| 1492 |
+
rel_pos = None,
|
| 1493 |
+
rotary_pos_emb = None,
|
| 1494 |
+
prev_attn = None,
|
| 1495 |
+
mem = None,
|
| 1496 |
+
return_intermediates = False,
|
| 1497 |
+
cache: Optional[Intermediates] = None,
|
| 1498 |
+
):
|
| 1499 |
+
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
|
| 1500 |
+
kv_input = default(context, x)
|
| 1501 |
+
|
| 1502 |
+
q_input = x
|
| 1503 |
+
k_input = kv_input
|
| 1504 |
+
v_input = kv_input
|
| 1505 |
+
r_input = x
|
| 1506 |
+
|
| 1507 |
+
if exists(mem):
|
| 1508 |
+
k_input, mem_packed_shape = pack([mem, k_input], 'b * d')
|
| 1509 |
+
v_input, _ = pack([mem, v_input], 'b * d')
|
| 1510 |
+
|
| 1511 |
+
q = self.to_q(q_input)
|
| 1512 |
+
k = self.to_k(k_input)
|
| 1513 |
+
v = self.to_v(v_input) if exists(self.to_v) else k
|
| 1514 |
+
r = self.to_r(r_input) if exists(self.to_r) else None
|
| 1515 |
+
|
| 1516 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
| 1517 |
+
|
| 1518 |
+
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))
|
| 1519 |
+
|
| 1520 |
+
if exists(cache) and not has_context:
|
| 1521 |
+
ck, cv = cache.cached_kv
|
| 1522 |
+
|
| 1523 |
+
if exists(mem):
|
| 1524 |
+
mk, k = unpack(k, mem_packed_shape, 'b h * d')
|
| 1525 |
+
mv, v = unpack(v, mem_packed_shape, 'b h * d')
|
| 1526 |
+
|
| 1527 |
+
k = torch.cat((ck, k), dim = -2)
|
| 1528 |
+
v = torch.cat((cv, v), dim = -2)
|
| 1529 |
+
|
| 1530 |
+
if exists(mem):
|
| 1531 |
+
k = torch.cat((mk, k), dim = -2)
|
| 1532 |
+
v = torch.cat((mv, v), dim = -2)
|
| 1533 |
+
|
| 1534 |
+
if return_intermediates:
|
| 1535 |
+
mem_len = mem.shape[-2] if exists(mem) else 0
|
| 1536 |
+
cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :])
|
| 1537 |
+
|
| 1538 |
+
if self.qk_norm:
|
| 1539 |
+
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
|
| 1540 |
+
q, k = map(qk_l2norm, (q, k))
|
| 1541 |
+
scale = self.qk_norm_scale
|
| 1542 |
+
|
| 1543 |
+
q = q * self.qk_norm_q_scale
|
| 1544 |
+
k = k * self.qk_norm_k_scale
|
| 1545 |
+
|
| 1546 |
+
if exists(rotary_pos_emb) and not has_context:
|
| 1547 |
+
freqs, xpos_scale = rotary_pos_emb
|
| 1548 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)
|
| 1549 |
+
|
| 1550 |
+
q = apply_rotary_pos_emb(q, freqs, q_xpos_scale)
|
| 1551 |
+
k = apply_rotary_pos_emb(k, freqs, k_xpos_scale)
|
| 1552 |
+
|
| 1553 |
+
if self.rotary_embed_values:
|
| 1554 |
+
v = apply_rotary_pos_emb(v, freqs, k_xpos_scale)
|
| 1555 |
+
|
| 1556 |
+
input_mask = context_mask
|
| 1557 |
+
|
| 1558 |
+
if not exists(input_mask) and not has_context:
|
| 1559 |
+
input_mask = mask
|
| 1560 |
+
|
| 1561 |
+
if self.num_mem_kv > 0:
|
| 1562 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))
|
| 1563 |
+
|
| 1564 |
+
if self.qk_norm:
|
| 1565 |
+
mem_k = l2norm(mem_k)
|
| 1566 |
+
mem_k = mem_k * self.qk_norm_k_scale
|
| 1567 |
+
|
| 1568 |
+
k = torch.cat((mem_k, k), dim = -2)
|
| 1569 |
+
v = torch.cat((mem_v, v), dim = -2)
|
| 1570 |
+
|
| 1571 |
+
if exists(input_mask):
|
| 1572 |
+
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)
|
| 1573 |
+
|
| 1574 |
+
i, j = map(lambda t: t.shape[-2], (q, k))
|
| 1575 |
+
|
| 1576 |
+
# determine masking
|
| 1577 |
+
|
| 1578 |
+
mask_value = max_neg_value(q)
|
| 1579 |
+
masks = []
|
| 1580 |
+
final_attn_mask = None
|
| 1581 |
+
|
| 1582 |
+
if exists(input_mask):
|
| 1583 |
+
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
| 1584 |
+
masks.append(~input_mask)
|
| 1585 |
+
|
| 1586 |
+
if exists(attn_mask):
|
| 1587 |
+
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
|
| 1588 |
+
if attn_mask.ndim == 2:
|
| 1589 |
+
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
|
| 1590 |
+
elif attn_mask.ndim == 3:
|
| 1591 |
+
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
|
| 1592 |
+
masks.append(~attn_mask)
|
| 1593 |
+
|
| 1594 |
+
if exists(self.max_attend_past):
|
| 1595 |
+
range_q = torch.arange(j - i, j, device = device)
|
| 1596 |
+
range_k = torch.arange(j, device = device)
|
| 1597 |
+
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
|
| 1598 |
+
max_attend_past_mask = dist > self.max_attend_past
|
| 1599 |
+
masks.append(max_attend_past_mask)
|
| 1600 |
+
|
| 1601 |
+
if len(masks) > 0:
|
| 1602 |
+
final_attn_mask = ~or_reduce(masks)
|
| 1603 |
+
|
| 1604 |
+
# prepare relative positional bias, if needed
|
| 1605 |
+
|
| 1606 |
+
attn_bias = None
|
| 1607 |
+
if exists(rel_pos):
|
| 1608 |
+
attn_bias = rel_pos(i, j)
|
| 1609 |
+
|
| 1610 |
+
# attention is all we need
|
| 1611 |
+
|
| 1612 |
+
out, intermediates = self.attend(
|
| 1613 |
+
q, k, v,
|
| 1614 |
+
mask = final_attn_mask,
|
| 1615 |
+
attn_bias = attn_bias,
|
| 1616 |
+
prev_attn = prev_attn
|
| 1617 |
+
)
|
| 1618 |
+
|
| 1619 |
+
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients
|
| 1620 |
+
|
| 1621 |
+
if exists(r):
|
| 1622 |
+
out = out * r + out
|
| 1623 |
+
|
| 1624 |
+
# normformer scaling of heads
|
| 1625 |
+
|
| 1626 |
+
if head_scale:
|
| 1627 |
+
out = out * self.head_scale_params
|
| 1628 |
+
|
| 1629 |
+
# per head gating, from https://arxiv.org/abs/2306.12929
|
| 1630 |
+
|
| 1631 |
+
if exists(self.to_v_head_gate):
|
| 1632 |
+
head_gate = self.to_v_head_gate(x)
|
| 1633 |
+
out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid()
|
| 1634 |
+
|
| 1635 |
+
# merge heads
|
| 1636 |
+
|
| 1637 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 1638 |
+
|
| 1639 |
+
# alphafold2 styled gating of the values
|
| 1640 |
+
|
| 1641 |
+
if exists(self.to_v_gate):
|
| 1642 |
+
gates = self.to_v_gate(x)
|
| 1643 |
+
out = out * gates.sigmoid()
|
| 1644 |
+
|
| 1645 |
+
# combine the heads
|
| 1646 |
+
|
| 1647 |
+
out = self.to_out(out)
|
| 1648 |
+
|
| 1649 |
+
if exists(mask):
|
| 1650 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
| 1651 |
+
out = out.masked_fill(~mask, 0.)
|
| 1652 |
+
|
| 1653 |
+
if not return_intermediates:
|
| 1654 |
+
return out
|
| 1655 |
+
|
| 1656 |
+
intermediates.cached_kv = cached_kv
|
| 1657 |
+
|
| 1658 |
+
return out, intermediates
|
| 1659 |
+
|
| 1660 |
+
class AttentionLayers(nn.Module):
|
| 1661 |
+
def __init__(
|
| 1662 |
+
self,
|
| 1663 |
+
dim,
|
| 1664 |
+
depth,
|
| 1665 |
+
heads = 8,
|
| 1666 |
+
causal = False,
|
| 1667 |
+
cross_attend = False,
|
| 1668 |
+
only_cross = False,
|
| 1669 |
+
use_scalenorm = False,
|
| 1670 |
+
use_rmsnorm = False,
|
| 1671 |
+
use_simple_rmsnorm = False,
|
| 1672 |
+
alibi_pos_bias = False,
|
| 1673 |
+
alibi_num_heads = None,
|
| 1674 |
+
rel_pos_bias = False,
|
| 1675 |
+
rel_pos_num_buckets = 32,
|
| 1676 |
+
rel_pos_max_distance = 128,
|
| 1677 |
+
dynamic_pos_bias = False,
|
| 1678 |
+
dynamic_pos_bias_log_distance = False,
|
| 1679 |
+
dynamic_pos_bias_mlp_depth = 2,
|
| 1680 |
+
dynamic_pos_bias_norm = False,
|
| 1681 |
+
rotary_pos_emb = False,
|
| 1682 |
+
rotary_emb_dim = None,
|
| 1683 |
+
rotary_xpos = False,
|
| 1684 |
+
rotary_interpolation_factor = 1.,
|
| 1685 |
+
rotary_xpos_scale_base = 512,
|
| 1686 |
+
rotary_base_rescale_factor = 1.,
|
| 1687 |
+
custom_layers = None,
|
| 1688 |
+
sandwich_coef = None,
|
| 1689 |
+
par_ratio = None,
|
| 1690 |
+
weight_tie_layers = False, # Albert - https://arxiv.org/abs/1909.11942
|
| 1691 |
+
layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders
|
| 1692 |
+
residual_attn = False,
|
| 1693 |
+
cross_residual_attn = False,
|
| 1694 |
+
macaron = False,
|
| 1695 |
+
pre_norm = True,
|
| 1696 |
+
pre_norm_has_final_norm = True,
|
| 1697 |
+
gate_residual = False,
|
| 1698 |
+
scale_residual = False,
|
| 1699 |
+
scale_residual_constant = 1.,
|
| 1700 |
+
shift_tokens = 0,
|
| 1701 |
+
sandwich_norm = False,
|
| 1702 |
+
resi_dual = False,
|
| 1703 |
+
resi_dual_scale = 1.,
|
| 1704 |
+
zero_init_branch_output = False,
|
| 1705 |
+
layer_dropout = 0.,
|
| 1706 |
+
cross_attn_tokens_dropout = 0.,
|
| 1707 |
+
**kwargs
|
| 1708 |
+
):
|
| 1709 |
+
super().__init__()
|
| 1710 |
+
rotary_pos_emb = rotary_pos_emb or rotary_xpos
|
| 1711 |
+
|
| 1712 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
| 1713 |
+
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
|
| 1714 |
+
|
| 1715 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
| 1716 |
+
|
| 1717 |
+
self.dim = dim
|
| 1718 |
+
self.depth = depth
|
| 1719 |
+
self.causal = causal
|
| 1720 |
+
self.layers = nn.ModuleList([])
|
| 1721 |
+
|
| 1722 |
+
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
|
| 1723 |
+
|
| 1724 |
+
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
|
| 1725 |
+
|
| 1726 |
+
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
|
| 1727 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None
|
| 1728 |
+
|
| 1729 |
+
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
|
| 1730 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
| 1731 |
+
|
| 1732 |
+
# relative positional bias
|
| 1733 |
+
|
| 1734 |
+
flash_attn = attn_kwargs.get('flash', False)
|
| 1735 |
+
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'
|
| 1736 |
+
|
| 1737 |
+
self.rel_pos = None
|
| 1738 |
+
if rel_pos_bias:
|
| 1739 |
+
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
|
| 1740 |
+
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
|
| 1741 |
+
elif dynamic_pos_bias:
|
| 1742 |
+
assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
|
| 1743 |
+
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
|
| 1744 |
+
elif alibi_pos_bias:
|
| 1745 |
+
alibi_num_heads = default(alibi_num_heads, heads)
|
| 1746 |
+
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
|
| 1747 |
+
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
|
| 1748 |
+
|
| 1749 |
+
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
|
| 1750 |
+
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
|
| 1751 |
+
|
| 1752 |
+
if resi_dual:
|
| 1753 |
+
pre_norm = False
|
| 1754 |
+
|
| 1755 |
+
self.pre_norm = pre_norm
|
| 1756 |
+
self.sandwich_norm = sandwich_norm
|
| 1757 |
+
|
| 1758 |
+
self.resi_dual = resi_dual
|
| 1759 |
+
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
|
| 1760 |
+
self.resi_dual_scale = resi_dual_scale
|
| 1761 |
+
|
| 1762 |
+
self.residual_attn = residual_attn
|
| 1763 |
+
self.cross_residual_attn = cross_residual_attn
|
| 1764 |
+
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'
|
| 1765 |
+
|
| 1766 |
+
self.cross_attend = cross_attend
|
| 1767 |
+
|
| 1768 |
+
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'
|
| 1769 |
+
|
| 1770 |
+
if use_scalenorm:
|
| 1771 |
+
norm_class = ScaleNorm
|
| 1772 |
+
elif use_rmsnorm:
|
| 1773 |
+
norm_class = RMSNorm
|
| 1774 |
+
elif use_simple_rmsnorm:
|
| 1775 |
+
norm_class = SimpleRMSNorm
|
| 1776 |
+
else:
|
| 1777 |
+
norm_class = nn.LayerNorm
|
| 1778 |
+
|
| 1779 |
+
norm_fn = partial(norm_class, dim)
|
| 1780 |
+
|
| 1781 |
+
if cross_attend and not only_cross:
|
| 1782 |
+
default_block = ('a', 'c', 'f')
|
| 1783 |
+
elif cross_attend and only_cross:
|
| 1784 |
+
default_block = ('c', 'f')
|
| 1785 |
+
else:
|
| 1786 |
+
default_block = ('a', 'f')
|
| 1787 |
+
|
| 1788 |
+
if macaron:
|
| 1789 |
+
default_block = ('f',) + default_block
|
| 1790 |
+
|
| 1791 |
+
# zero init
|
| 1792 |
+
|
| 1793 |
+
if zero_init_branch_output:
|
| 1794 |
+
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
|
| 1795 |
+
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
|
| 1796 |
+
|
| 1797 |
+
# setup weight tying, which is a special case of `layer_execute_order`
|
| 1798 |
+
|
| 1799 |
+
assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))]))
|
| 1800 |
+
|
| 1801 |
+
if weight_tie_layers:
|
| 1802 |
+
assert not exists(layers_execute_order)
|
| 1803 |
+
layers_execute_order = tuple(range(len(default_block))) * depth
|
| 1804 |
+
depth = 1
|
| 1805 |
+
|
| 1806 |
+
# calculate layer block order
|
| 1807 |
+
|
| 1808 |
+
if exists(custom_layers):
|
| 1809 |
+
layer_types = custom_layers
|
| 1810 |
+
elif exists(par_ratio):
|
| 1811 |
+
par_depth = depth * len(default_block)
|
| 1812 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
| 1813 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
| 1814 |
+
par_attn = par_depth // par_ratio
|
| 1815 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
| 1816 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
| 1817 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
| 1818 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
| 1819 |
+
par_head = par_block * par_attn
|
| 1820 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
| 1821 |
+
elif exists(sandwich_coef):
|
| 1822 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
| 1823 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
| 1824 |
+
else:
|
| 1825 |
+
layer_types = default_block * depth
|
| 1826 |
+
|
| 1827 |
+
self.layer_types = layer_types
|
| 1828 |
+
self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types))))
|
| 1829 |
+
|
| 1830 |
+
assert all([i < len(self.layer_types) for i in self.layers_execute_order])
|
| 1831 |
+
|
| 1832 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
| 1833 |
+
|
| 1834 |
+
# stochastic depth
|
| 1835 |
+
|
| 1836 |
+
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
|
| 1837 |
+
|
| 1838 |
+
# structured dropout for cross attending
|
| 1839 |
+
|
| 1840 |
+
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
|
| 1841 |
+
|
| 1842 |
+
# calculate token shifting
|
| 1843 |
+
|
| 1844 |
+
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
|
| 1845 |
+
|
| 1846 |
+
# whether it has post norm
|
| 1847 |
+
|
| 1848 |
+
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()
|
| 1849 |
+
|
| 1850 |
+
# iterate and construct layers
|
| 1851 |
+
|
| 1852 |
+
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
|
| 1853 |
+
is_last_layer = ind == (len(self.layer_types) - 1)
|
| 1854 |
+
|
| 1855 |
+
if layer_type == 'a':
|
| 1856 |
+
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
|
| 1857 |
+
elif layer_type == 'c':
|
| 1858 |
+
layer = Attention(dim, heads = heads, **attn_kwargs)
|
| 1859 |
+
elif layer_type == 'f':
|
| 1860 |
+
layer = FeedForward(dim, **ff_kwargs)
|
| 1861 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
| 1862 |
+
else:
|
| 1863 |
+
raise Exception(f'invalid layer type {layer_type}')
|
| 1864 |
+
|
| 1865 |
+
if layer_shift_tokens > 0:
|
| 1866 |
+
shift_range_upper = layer_shift_tokens + 1
|
| 1867 |
+
shift_range_lower = -layer_shift_tokens if not causal else 0
|
| 1868 |
+
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
|
| 1869 |
+
|
| 1870 |
+
residual_fn = GRUGating if gate_residual else Residual
|
| 1871 |
+
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)
|
| 1872 |
+
|
| 1873 |
+
pre_branch_norm = norm_fn() if pre_norm else None
|
| 1874 |
+
post_branch_norm = norm_fn() if sandwich_norm else None
|
| 1875 |
+
post_main_norm = norm_fn() if not pre_norm else None
|
| 1876 |
+
|
| 1877 |
+
norms = nn.ModuleList([
|
| 1878 |
+
pre_branch_norm,
|
| 1879 |
+
post_branch_norm,
|
| 1880 |
+
post_main_norm
|
| 1881 |
+
])
|
| 1882 |
+
|
| 1883 |
+
self.layers.append(nn.ModuleList([
|
| 1884 |
+
norms,
|
| 1885 |
+
layer,
|
| 1886 |
+
residual
|
| 1887 |
+
]))
|
| 1888 |
+
|
| 1889 |
+
def forward(
|
| 1890 |
+
self,
|
| 1891 |
+
x,
|
| 1892 |
+
context = None,
|
| 1893 |
+
mask = None,
|
| 1894 |
+
context_mask = None,
|
| 1895 |
+
attn_mask = None,
|
| 1896 |
+
self_attn_kv_mask = None,
|
| 1897 |
+
mems = None,
|
| 1898 |
+
seq_start_pos: Optional[Tensor] = None,
|
| 1899 |
+
cache: Optional[LayerIntermediates] = None,
|
| 1900 |
+
cache_age = 1,
|
| 1901 |
+
return_hiddens = False
|
| 1902 |
+
):
|
| 1903 |
+
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
|
| 1904 |
+
|
| 1905 |
+
# initialize accums
|
| 1906 |
+
|
| 1907 |
+
hiddens = []
|
| 1908 |
+
layer_hiddens = []
|
| 1909 |
+
intermediates = []
|
| 1910 |
+
|
| 1911 |
+
prev_attn = None
|
| 1912 |
+
prev_cross_attn = None
|
| 1913 |
+
|
| 1914 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
| 1915 |
+
|
| 1916 |
+
# handle left padded sequences
|
| 1917 |
+
|
| 1918 |
+
if exists(seq_start_pos):
|
| 1919 |
+
seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long)
|
| 1920 |
+
left_pad_mask = seq_arange >= seq_start_pos[..., None]
|
| 1921 |
+
|
| 1922 |
+
if exists(self_attn_kv_mask):
|
| 1923 |
+
self_attn_kv_mask = self_attn_kv_mask & left_pad_mask
|
| 1924 |
+
else:
|
| 1925 |
+
self_attn_kv_mask = left_pad_mask
|
| 1926 |
+
|
| 1927 |
+
# rotary positions
|
| 1928 |
+
|
| 1929 |
+
rotary_pos_emb = None
|
| 1930 |
+
|
| 1931 |
+
if exists(self.rotary_pos_emb):
|
| 1932 |
+
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
|
| 1933 |
+
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length)
|
| 1934 |
+
|
| 1935 |
+
# assume cached key / values
|
| 1936 |
+
|
| 1937 |
+
attn_cache = []
|
| 1938 |
+
|
| 1939 |
+
if exists(cache):
|
| 1940 |
+
assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))])
|
| 1941 |
+
|
| 1942 |
+
if cache_age > 0:
|
| 1943 |
+
x = x[:, -cache_age:] # for spec decoding, may be greater than 1
|
| 1944 |
+
|
| 1945 |
+
attn_cache = cache.attn_intermediates
|
| 1946 |
+
|
| 1947 |
+
iter_attn_cache = iter(attn_cache)
|
| 1948 |
+
|
| 1949 |
+
# outer residual - for resiDual paper
|
| 1950 |
+
|
| 1951 |
+
outer_residual = x * self.resi_dual_scale
|
| 1952 |
+
|
| 1953 |
+
# get layers to be executed
|
| 1954 |
+
|
| 1955 |
+
layer_variables = (
|
| 1956 |
+
self.layer_types,
|
| 1957 |
+
self.layers,
|
| 1958 |
+
self.layer_dropouts
|
| 1959 |
+
)
|
| 1960 |
+
|
| 1961 |
+
layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables)
|
| 1962 |
+
|
| 1963 |
+
# go through the attention and feedforward layers
|
| 1964 |
+
|
| 1965 |
+
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)):
|
| 1966 |
+
is_last = ind == (len(self.layers) - 1)
|
| 1967 |
+
|
| 1968 |
+
if self.training and layer_dropout > 0. and random() < layer_dropout:
|
| 1969 |
+
continue
|
| 1970 |
+
|
| 1971 |
+
if layer_type == 'a':
|
| 1972 |
+
if return_hiddens:
|
| 1973 |
+
hiddens.append(x)
|
| 1974 |
+
layer_mem = mems.pop(0) if mems else None
|
| 1975 |
+
|
| 1976 |
+
if layer_type == 'c':
|
| 1977 |
+
if self.training and self.cross_attn_tokens_dropout > 0.:
|
| 1978 |
+
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)
|
| 1979 |
+
|
| 1980 |
+
inner_residual = x
|
| 1981 |
+
|
| 1982 |
+
if return_hiddens:
|
| 1983 |
+
layer_hiddens.append(x)
|
| 1984 |
+
|
| 1985 |
+
pre_norm, post_branch_norm, post_main_norm = norm
|
| 1986 |
+
|
| 1987 |
+
if exists(pre_norm):
|
| 1988 |
+
x = pre_norm(x)
|
| 1989 |
+
|
| 1990 |
+
if layer_type == 'a':
|
| 1991 |
+
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True)
|
| 1992 |
+
elif layer_type == 'c':
|
| 1993 |
+
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True)
|
| 1994 |
+
elif layer_type == 'f':
|
| 1995 |
+
out = block(x)
|
| 1996 |
+
|
| 1997 |
+
if self.resi_dual:
|
| 1998 |
+
outer_residual = outer_residual + out * self.resi_dual_scale
|
| 1999 |
+
|
| 2000 |
+
if exists(post_branch_norm):
|
| 2001 |
+
out = post_branch_norm(out)
|
| 2002 |
+
|
| 2003 |
+
x = residual_fn(out, inner_residual)
|
| 2004 |
+
|
| 2005 |
+
if layer_type in ('a', 'c') and return_hiddens:
|
| 2006 |
+
intermediates.append(inter)
|
| 2007 |
+
|
| 2008 |
+
if layer_type == 'a' and self.residual_attn:
|
| 2009 |
+
prev_attn = inter.pre_softmax_attn
|
| 2010 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
| 2011 |
+
prev_cross_attn = inter.pre_softmax_attn
|
| 2012 |
+
|
| 2013 |
+
if exists(post_main_norm):
|
| 2014 |
+
x = post_main_norm(x)
|
| 2015 |
+
|
| 2016 |
+
if return_hiddens:
|
| 2017 |
+
layer_hiddens.append(x)
|
| 2018 |
+
|
| 2019 |
+
if self.resi_dual:
|
| 2020 |
+
x = x + self.final_norm(outer_residual)
|
| 2021 |
+
else:
|
| 2022 |
+
x = self.final_norm(x)
|
| 2023 |
+
|
| 2024 |
+
if not return_hiddens:
|
| 2025 |
+
return x
|
| 2026 |
+
|
| 2027 |
+
intermediates = LayerIntermediates(
|
| 2028 |
+
hiddens = hiddens,
|
| 2029 |
+
attn_intermediates = intermediates,
|
| 2030 |
+
layer_hiddens = layer_hiddens
|
| 2031 |
+
)
|
| 2032 |
+
|
| 2033 |
+
return x, intermediates
|
| 2034 |
+
|
| 2035 |
+
class Encoder(AttentionLayers):
|
| 2036 |
+
def __init__(self, **kwargs):
|
| 2037 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
| 2038 |
+
super().__init__(causal = False, **kwargs)
|
| 2039 |
+
|
| 2040 |
+
class Decoder(AttentionLayers):
|
| 2041 |
+
def __init__(self, **kwargs):
|
| 2042 |
+
assert 'causal' not in kwargs, 'cannot set causality on decoder'
|
| 2043 |
+
super().__init__(causal = True, **kwargs)
|
| 2044 |
+
|
| 2045 |
+
class CrossAttender(AttentionLayers):
|
| 2046 |
+
def __init__(self, **kwargs):
|
| 2047 |
+
super().__init__(cross_attend = True, only_cross = True, **kwargs)
|
| 2048 |
+
|
| 2049 |
+
class ViTransformerWrapper(nn.Module):
|
| 2050 |
+
def __init__(
|
| 2051 |
+
self,
|
| 2052 |
+
*,
|
| 2053 |
+
image_size,
|
| 2054 |
+
patch_size,
|
| 2055 |
+
attn_layers,
|
| 2056 |
+
channels = 3,
|
| 2057 |
+
num_classes = None,
|
| 2058 |
+
post_emb_norm = False,
|
| 2059 |
+
num_register_tokens = 0,
|
| 2060 |
+
emb_dropout = 0.
|
| 2061 |
+
):
|
| 2062 |
+
super().__init__()
|
| 2063 |
+
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
|
| 2064 |
+
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
|
| 2065 |
+
dim = attn_layers.dim
|
| 2066 |
+
num_patches = (image_size // patch_size) ** 2
|
| 2067 |
+
patch_dim = channels * patch_size ** 2
|
| 2068 |
+
|
| 2069 |
+
self.patch_size = patch_size
|
| 2070 |
+
|
| 2071 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
|
| 2072 |
+
|
| 2073 |
+
has_register_tokens = num_register_tokens > 0
|
| 2074 |
+
self.has_register_tokens = has_register_tokens
|
| 2075 |
+
|
| 2076 |
+
if has_register_tokens:
|
| 2077 |
+
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
|
| 2078 |
+
|
| 2079 |
+
self.patch_to_embedding = nn.Sequential(
|
| 2080 |
+
nn.LayerNorm(patch_dim),
|
| 2081 |
+
nn.Linear(patch_dim, dim),
|
| 2082 |
+
nn.LayerNorm(dim)
|
| 2083 |
+
)
|
| 2084 |
+
|
| 2085 |
+
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
|
| 2086 |
+
self.dropout = nn.Dropout(emb_dropout)
|
| 2087 |
+
|
| 2088 |
+
self.attn_layers = attn_layers
|
| 2089 |
+
|
| 2090 |
+
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()
|
| 2091 |
+
|
| 2092 |
+
def forward(
|
| 2093 |
+
self,
|
| 2094 |
+
img,
|
| 2095 |
+
return_embeddings = False
|
| 2096 |
+
):
|
| 2097 |
+
b, p = img.shape[0], self.patch_size
|
| 2098 |
+
|
| 2099 |
+
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
|
| 2100 |
+
x = self.patch_to_embedding(x)
|
| 2101 |
+
n = x.shape[1]
|
| 2102 |
+
|
| 2103 |
+
x = x + self.pos_embedding[:, :n]
|
| 2104 |
+
|
| 2105 |
+
x = self.post_emb_norm(x)
|
| 2106 |
+
x = self.dropout(x)
|
| 2107 |
+
|
| 2108 |
+
if self.has_register_tokens:
|
| 2109 |
+
r = repeat(self.register_tokens, 'n d -> b n d', b = b)
|
| 2110 |
+
x, ps = pack((x, r), 'b * d')
|
| 2111 |
+
|
| 2112 |
+
x = self.attn_layers(x)
|
| 2113 |
+
|
| 2114 |
+
if self.has_register_tokens:
|
| 2115 |
+
x, _ = unpack(x, ps, 'b * d')
|
| 2116 |
+
|
| 2117 |
+
if not exists(self.mlp_head) or return_embeddings:
|
| 2118 |
+
return x
|
| 2119 |
+
|
| 2120 |
+
x = x.mean(dim = -2)
|
| 2121 |
+
return self.mlp_head(x)
|
| 2122 |
+
|
| 2123 |
+
class TransformerWrapper(nn.Module):
|
| 2124 |
+
def __init__(
|
| 2125 |
+
self,
|
| 2126 |
+
*,
|
| 2127 |
+
num_tokens,
|
| 2128 |
+
max_seq_len,
|
| 2129 |
+
attn_layers,
|
| 2130 |
+
emb_dim = None,
|
| 2131 |
+
max_mem_len = 0,
|
| 2132 |
+
shift_mem_down = 0,
|
| 2133 |
+
emb_dropout = 0.,
|
| 2134 |
+
post_emb_norm = False,
|
| 2135 |
+
num_memory_tokens = None,
|
| 2136 |
+
memory_tokens_interspersed_every = None,
|
| 2137 |
+
tie_embedding = False,
|
| 2138 |
+
logits_dim = None,
|
| 2139 |
+
use_abs_pos_emb = True,
|
| 2140 |
+
scaled_sinu_pos_emb = False,
|
| 2141 |
+
l2norm_embed = False,
|
| 2142 |
+
emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1
|
| 2143 |
+
attn_z_loss_weight = 1e-4,
|
| 2144 |
+
):
|
| 2145 |
+
super().__init__()
|
| 2146 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
| 2147 |
+
|
| 2148 |
+
dim = attn_layers.dim
|
| 2149 |
+
emb_dim = default(emb_dim, dim)
|
| 2150 |
+
self.emb_dim = emb_dim
|
| 2151 |
+
self.num_tokens = num_tokens
|
| 2152 |
+
|
| 2153 |
+
self.max_seq_len = max_seq_len
|
| 2154 |
+
self.max_mem_len = max_mem_len
|
| 2155 |
+
self.shift_mem_down = shift_mem_down
|
| 2156 |
+
|
| 2157 |
+
self.l2norm_embed = l2norm_embed
|
| 2158 |
+
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)
|
| 2159 |
+
|
| 2160 |
+
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
|
| 2161 |
+
self.pos_emb = always(0)
|
| 2162 |
+
elif scaled_sinu_pos_emb:
|
| 2163 |
+
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
|
| 2164 |
+
else:
|
| 2165 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)
|
| 2166 |
+
|
| 2167 |
+
self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290
|
| 2168 |
+
|
| 2169 |
+
self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
|
| 2170 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
| 2171 |
+
|
| 2172 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
| 2173 |
+
self.attn_layers = attn_layers
|
| 2174 |
+
|
| 2175 |
+
self.init_()
|
| 2176 |
+
|
| 2177 |
+
logits_dim = default(logits_dim, num_tokens)
|
| 2178 |
+
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t()
|
| 2179 |
+
|
| 2180 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
| 2181 |
+
|
| 2182 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
| 2183 |
+
self.num_memory_tokens = num_memory_tokens
|
| 2184 |
+
if num_memory_tokens > 0:
|
| 2185 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
| 2186 |
+
|
| 2187 |
+
self.memory_tokens_interspersed_every = memory_tokens_interspersed_every
|
| 2188 |
+
|
| 2189 |
+
# whether can do cached kv decoding
|
| 2190 |
+
|
| 2191 |
+
self.can_cache_kv = self.num_memory_tokens == 0
|
| 2192 |
+
|
| 2193 |
+
def init_(self):
|
| 2194 |
+
if self.l2norm_embed:
|
| 2195 |
+
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
|
| 2196 |
+
if not isinstance(self.pos_emb, always):
|
| 2197 |
+
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
|
| 2198 |
+
return
|
| 2199 |
+
|
| 2200 |
+
nn.init.kaiming_normal_(self.token_emb.emb.weight)
|
| 2201 |
+
|
| 2202 |
+
def forward(
|
| 2203 |
+
self,
|
| 2204 |
+
x,
|
| 2205 |
+
return_embeddings = False,
|
| 2206 |
+
return_logits_and_embeddings = False,
|
| 2207 |
+
return_intermediates = False,
|
| 2208 |
+
mask = None,
|
| 2209 |
+
return_mems = False,
|
| 2210 |
+
return_attn = False,
|
| 2211 |
+
mems = None,
|
| 2212 |
+
pos = None,
|
| 2213 |
+
prepend_embeds = None,
|
| 2214 |
+
sum_embeds = None,
|
| 2215 |
+
return_attn_z_loss = False,
|
| 2216 |
+
attn_z_loss_weight = 1e-4,
|
| 2217 |
+
seq_start_pos = None,
|
| 2218 |
+
cache: Optional[LayerIntermediates] = None,
|
| 2219 |
+
**kwargs
|
| 2220 |
+
):
|
| 2221 |
+
b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient
|
| 2222 |
+
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss
|
| 2223 |
+
|
| 2224 |
+
# absolute positional embedding
|
| 2225 |
+
|
| 2226 |
+
external_pos_emb = exists(pos) and pos.dtype != torch.long
|
| 2227 |
+
pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
|
| 2228 |
+
x = self.token_emb(x) + pos_emb
|
| 2229 |
+
|
| 2230 |
+
# for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training
|
| 2231 |
+
|
| 2232 |
+
if exists(sum_embeds):
|
| 2233 |
+
x = x + sum_embeds
|
| 2234 |
+
|
| 2235 |
+
# post embedding norm, purportedly leads to greater stabilization
|
| 2236 |
+
|
| 2237 |
+
x = self.post_emb_norm(x)
|
| 2238 |
+
|
| 2239 |
+
# whether to append embeds, as in PaLI, for image embeddings
|
| 2240 |
+
|
| 2241 |
+
if exists(prepend_embeds):
|
| 2242 |
+
prepend_seq, prepend_dim = prepend_embeds.shape[1:]
|
| 2243 |
+
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'
|
| 2244 |
+
|
| 2245 |
+
x = torch.cat((prepend_embeds, x), dim = -2)
|
| 2246 |
+
|
| 2247 |
+
# whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model
|
| 2248 |
+
|
| 2249 |
+
if emb_frac_gradient < 1:
|
| 2250 |
+
assert emb_frac_gradient > 0
|
| 2251 |
+
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)
|
| 2252 |
+
|
| 2253 |
+
# embedding dropout
|
| 2254 |
+
|
| 2255 |
+
x = self.emb_dropout(x)
|
| 2256 |
+
|
| 2257 |
+
x = self.project_emb(x)
|
| 2258 |
+
|
| 2259 |
+
if has_memory_tokens:
|
| 2260 |
+
mem_every = self.memory_tokens_interspersed_every
|
| 2261 |
+
|
| 2262 |
+
if exists(mem_every):
|
| 2263 |
+
assert mem_every > 0
|
| 2264 |
+
assert isinstance(self.attn_layers, Decoder), 'only for decoder'
|
| 2265 |
+
next_seq_len = math.ceil(n / mem_every) * mem_every
|
| 2266 |
+
|
| 2267 |
+
x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.)
|
| 2268 |
+
x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every)
|
| 2269 |
+
|
| 2270 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0])
|
| 2271 |
+
x, mem_packed_shape = pack((mem, x), 'b * d')
|
| 2272 |
+
|
| 2273 |
+
# auto-handle masking after appending memory tokens
|
| 2274 |
+
if not exists(mem_every) and exists(mask):
|
| 2275 |
+
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True)
|
| 2276 |
+
|
| 2277 |
+
if exists(mem_every):
|
| 2278 |
+
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
|
| 2279 |
+
|
| 2280 |
+
if self.shift_mem_down and exists(mems):
|
| 2281 |
+
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
|
| 2282 |
+
mems = [*mems_r, *mems_l]
|
| 2283 |
+
|
| 2284 |
+
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs)
|
| 2285 |
+
|
| 2286 |
+
if has_memory_tokens:
|
| 2287 |
+
if exists(mem_every):
|
| 2288 |
+
x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems))
|
| 2289 |
+
|
| 2290 |
+
mem, x = unpack(x, mem_packed_shape, 'b * d')
|
| 2291 |
+
|
| 2292 |
+
if exists(mem_every):
|
| 2293 |
+
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
|
| 2294 |
+
|
| 2295 |
+
x = x[:, :n]
|
| 2296 |
+
|
| 2297 |
+
if return_logits_and_embeddings:
|
| 2298 |
+
out = (self.to_logits(x), x)
|
| 2299 |
+
elif return_embeddings:
|
| 2300 |
+
out = x
|
| 2301 |
+
else:
|
| 2302 |
+
out = self.to_logits(x)
|
| 2303 |
+
|
| 2304 |
+
if return_attn_z_loss:
|
| 2305 |
+
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates))
|
| 2306 |
+
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
|
| 2307 |
+
return_intermediates = True
|
| 2308 |
+
|
| 2309 |
+
if return_mems:
|
| 2310 |
+
hiddens = intermediates.hiddens
|
| 2311 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens
|
| 2312 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
| 2313 |
+
|
| 2314 |
+
if not return_intermediates:
|
| 2315 |
+
return out, new_mems
|
| 2316 |
+
|
| 2317 |
+
intermediates.mems = new_mems
|
| 2318 |
+
|
| 2319 |
+
if return_intermediates:
|
| 2320 |
+
return out, intermediates
|
| 2321 |
+
|
| 2322 |
+
if return_attn:
|
| 2323 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
| 2324 |
+
return out, attn_maps
|
| 2325 |
+
|
| 2326 |
+
return out
|
| 2327 |
+
|
| 2328 |
+
class ContinuousTransformerWrapper(nn.Module):
|
| 2329 |
+
def __init__(
|
| 2330 |
+
self,
|
| 2331 |
+
*,
|
| 2332 |
+
max_seq_len,
|
| 2333 |
+
attn_layers,
|
| 2334 |
+
dim_in = None,
|
| 2335 |
+
dim_out = None,
|
| 2336 |
+
emb_dim = None,
|
| 2337 |
+
max_mem_len = 0,
|
| 2338 |
+
post_emb_norm = False,
|
| 2339 |
+
emb_dropout = 0.,
|
| 2340 |
+
use_abs_pos_emb = True,
|
| 2341 |
+
scaled_sinu_pos_emb = False
|
| 2342 |
+
):
|
| 2343 |
+
super().__init__()
|
| 2344 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
| 2345 |
+
|
| 2346 |
+
dim = attn_layers.dim
|
| 2347 |
+
|
| 2348 |
+
self.max_seq_len = max_seq_len
|
| 2349 |
+
|
| 2350 |
+
self.max_mem_len = max_mem_len
|
| 2351 |
+
|
| 2352 |
+
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
|
| 2353 |
+
self.pos_emb = always(0)
|
| 2354 |
+
elif scaled_sinu_pos_emb:
|
| 2355 |
+
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
| 2356 |
+
else:
|
| 2357 |
+
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len)
|
| 2358 |
+
|
| 2359 |
+
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
|
| 2360 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
| 2361 |
+
|
| 2362 |
+
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()
|
| 2363 |
+
|
| 2364 |
+
self.attn_layers = attn_layers
|
| 2365 |
+
|
| 2366 |
+
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()
|
| 2367 |
+
|
| 2368 |
+
def forward(
|
| 2369 |
+
self,
|
| 2370 |
+
x,
|
| 2371 |
+
return_embeddings = False,
|
| 2372 |
+
return_intermediates = False,
|
| 2373 |
+
return_mems = False,
|
| 2374 |
+
mask = None,
|
| 2375 |
+
return_attn = False,
|
| 2376 |
+
mems = None,
|
| 2377 |
+
pos = None,
|
| 2378 |
+
prepend_embeds = None,
|
| 2379 |
+
**kwargs
|
| 2380 |
+
):
|
| 2381 |
+
x = self.project_in(x)
|
| 2382 |
+
x = x + self.pos_emb(x, pos = pos)
|
| 2383 |
+
|
| 2384 |
+
x = self.post_emb_norm(x)
|
| 2385 |
+
|
| 2386 |
+
# whether to append embeds, as in PaLI, for image embeddings
|
| 2387 |
+
|
| 2388 |
+
if exists(prepend_embeds):
|
| 2389 |
+
_, prepend_dim = prepend_embeds.shape[1:]
|
| 2390 |
+
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions'
|
| 2391 |
+
|
| 2392 |
+
x = torch.cat((prepend_embeds, x), dim = -2)
|
| 2393 |
+
|
| 2394 |
+
x = self.emb_dropout(x)
|
| 2395 |
+
|
| 2396 |
+
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs)
|
| 2397 |
+
|
| 2398 |
+
out = self.project_out(x) if not return_embeddings else x
|
| 2399 |
+
|
| 2400 |
+
if return_intermediates:
|
| 2401 |
+
return out, intermediates
|
| 2402 |
+
|
| 2403 |
+
if return_mems:
|
| 2404 |
+
hiddens = intermediates.hiddens
|
| 2405 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens))
|
| 2406 |
+
return out, new_mems
|
| 2407 |
+
|
| 2408 |
+
if return_attn:
|
| 2409 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
| 2410 |
+
return out, attn_maps
|
| 2411 |
+
|
| 2412 |
+
return out
|
| 2413 |
+
|
| 2414 |
+
class XTransformer(nn.Module):
|
| 2415 |
+
def __init__(
|
| 2416 |
+
self,
|
| 2417 |
+
*,
|
| 2418 |
+
dim,
|
| 2419 |
+
tie_token_emb = False,
|
| 2420 |
+
ignore_index = -100,
|
| 2421 |
+
pad_value = 0,
|
| 2422 |
+
cross_attn_tokens_dropout = 0.,
|
| 2423 |
+
**kwargs
|
| 2424 |
+
):
|
| 2425 |
+
super().__init__()
|
| 2426 |
+
enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
|
| 2427 |
+
dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)
|
| 2428 |
+
|
| 2429 |
+
assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
|
| 2430 |
+
enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
|
| 2431 |
+
enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0)
|
| 2432 |
+
enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)
|
| 2433 |
+
enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False)
|
| 2434 |
+
enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True)
|
| 2435 |
+
|
| 2436 |
+
dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
|
| 2437 |
+
dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0)
|
| 2438 |
+
dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False)
|
| 2439 |
+
dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True)
|
| 2440 |
+
|
| 2441 |
+
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories
|
| 2442 |
+
|
| 2443 |
+
self.encoder = TransformerWrapper(
|
| 2444 |
+
**enc_transformer_kwargs,
|
| 2445 |
+
attn_layers = Encoder(dim = dim, **enc_kwargs)
|
| 2446 |
+
)
|
| 2447 |
+
|
| 2448 |
+
self.decoder = TransformerWrapper(
|
| 2449 |
+
**dec_transformer_kwargs,
|
| 2450 |
+
attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs)
|
| 2451 |
+
)
|
| 2452 |
+
|
| 2453 |
+
if tie_token_emb:
|
| 2454 |
+
self.decoder.token_emb = self.encoder.token_emb
|
| 2455 |
+
|
| 2456 |
+
self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value)
|
| 2457 |
+
|
| 2458 |
+
@torch.no_grad()
|
| 2459 |
+
def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs):
|
| 2460 |
+
encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True)
|
| 2461 |
+
return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs)
|
| 2462 |
+
|
| 2463 |
+
def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None):
|
| 2464 |
+
|
| 2465 |
+
if exists(src_prepend_embeds) and exists(mask):
|
| 2466 |
+
mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True)
|
| 2467 |
+
|
| 2468 |
+
enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True)
|
| 2469 |
+
|
| 2470 |
+
if self.training and self.cross_attn_tokens_dropout > 0:
|
| 2471 |
+
enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout)
|
| 2472 |
+
|
| 2473 |
+
out = self.decoder(tgt, context = enc, context_mask = mask)
|
| 2474 |
+
return out
|