asigalov61's picture
Update app.py
b0d55e1 verified
raw
history blame
13.9 kB
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer
#==================================================================================
print('=' * 70)
print('Guided Accompaniment Transformer Gradio App')
print('=' * 70)
print('Loading core Guided Accompaniment Transformer modules...')
import os
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Guided Accompaniment Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
print('=' * 70)
print('Loading aux Guided Accompaniment Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINTS = 'Guided_Accompaniment_Transformer_Trained_Model_59896_steps_0.9055_loss_0.735_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
#==================================================================================
def load_model():
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 2048
if model_selector == 'with velocity - 3 epochs':
PAD_IDX = 512
else:
PAD_IDX = 384
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=MODEL_CHECKPOINTS[model_selector])
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
model = torch.compile(model, mode='max-autotune')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
return [model, ctx]
#==================================================================================
def load_midi(input_midi, model_selector=''):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
cscore = TMIDIX.chordify_score([1000, zscore])
score = []
pc = cscore[0]
for c in cscore:
score.append(max(0, min(127, c[0][1]-pc[0][1])))
for n in c:
if model_selector == 'with velocity - 3 epochs':
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256, max(1, min(127, n[5]))+384])
else:
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256])
pc = c
return score
#==================================================================================
def save_midi(tokens, batch_number=None, model_selector=''):
song = tokens
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patch = 0
patches = [0] * 16
for m in song:
if 0 <= m < 128:
time += m * 32
elif 128 < m < 256:
dur = (m-128) * 32
elif 256 < m < 384:
pitch = (m-256)
if model_selector == 'without velocity - 3 epochs' or model_selector == 'without velocity - 7 epochs':
song_f.append(['note', time, dur, 0, pitch, max(40, pitch), 0])
elif 384 < m < 512:
vel = (m-384)
if model_selector == 'with velocity - 3 epochs':
song_f.append(['note', time, dur, 0, pitch, vel, 0])
if batch_number == None:
fname = 'Guided-Accompaniment-Transformer-Music-Composition'
else:
fname = 'Guided-Accompaniment-Transformer-Music-Composition_'+str(batch_number)
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Guided Accompaniment Transformer',
output_file_name = fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
verbose=False
)
return song_f
#==================================================================================
@spaces.GPU
def Generate_Accompaniment(input_midi,
num_gen_tokens,
model_temperature
):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('=' * 70)
print('Requested settings:')
print('=' * 70)
print('Input MIDI file name:', fn)
print('Input MIDI type:', input_midi_type)
print('Conversion type:', input_conv_type)
print('Number of prime notes:', input_number_prime_notes)
print('Number of notes to convert:', input_number_conv_notes)
print('Model durations sampling top value:', input_model_dur_top_k)
print('Model durations temperature:', input_model_dur_temperature)
print('Model velocities temperature:', input_model_vel_temperature)
print('=' * 70)
#==================================================================
src_melody_chords_f = load_midi(input_midi.name)
#==================================================================
print('Sample output events', src_melody_chords_f[0][1][:3])
print('=' * 70)
print('Generating...')
model.to(DEVICE)
model.eval()
#==================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
if len(final_song) != 0:
time = 0
dur = 0
vel = 90
pitch = 60
channel = 0
patch = 0
patches = [0] * 16
for ss in final_song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 384:
pitch = ss-256
if 384 <= ss < 640:
dur = (ss-384) * 16
if 640 <= ss < 768:
vel = (ss-640)
song_f.append(['note', time, dur, channel, pitch, vel, patch])
fn1 = "Score-2-Performance-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Score 2 Performance Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi, output_audio, output_plot
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Accompaniment Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided melody accompaniment generation with transformers</h1>")
gr.HTML("""
Check out <a href="https://github.com/asigalov61/monsterpianotransformer">Guided Accompaniment Transformer</a> on GitHub or on
<p>
<a href="https://pypi.org/project/monsterpianotransformer/">
<img src="https://upload.wikimedia.org/wikipedia/commons/6/64/PyPI_logo.svg" alt="PyPI Project" style="width: 100px; height: auto;">
</a> or
<a href="https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("## Generate")
num_gen_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of tokens to generate")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Results")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
generate_btn.click(Generate_Accompaniment,
[input_midi,
num_gen_tokens,
model_temperature
],
[
output_audio,
output_plot,
output_midi,
]
)
'''gr.Examples(
[["asap_midi_score_21.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_45.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_69.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_118.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
["asap_midi_score_167.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
],
[input_midi,
input_midi_type,
input_conv_type,
input_number_prime_notes,
input_number_conv_notes,
input_model_dur_top_k,
input_model_dur_temperature,
input_model_vel_temperature
],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
Convert_Score_to_Performance
)'''
#==================================================================================
demo.launch()
#==================================================================================