Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,678 Bytes
a3ef88a 4128ca7 4d440f4 a3ef88a 16dca97 4128ca7 16dca97 a3ef88a d60cefe a3ef88a cee38fa a3ef88a 7dd2cd1 a3ef88a d60cefe a3ef88a b2f373f a3ef88a b9ced4c a3ef88a 987c189 a3ef88a d60cefe a3ef88a 4154701 a3ef88a 8c0a088 465603c 053cdcc a3ef88a 536ae91 26f179f a3ef88a 68539f9 47be7bd 8c0a088 47be7bd e02c3f7 0792426 b75abab a3ef88a bb2704c a3ef88a 39917f5 a3ef88a 39917f5 6b6f593 2cb6a42 a3ef88a 536ae91 a3ef88a 39917f5 a3ef88a 6b6f593 39917f5 a3ef88a 39917f5 a3ef88a 6b6f593 a3ef88a 39917f5 6b6f593 a3ef88a 6b6f593 a3ef88a 4154701 ed338d9 08fcb03 0d549a2 b9122dd b378f5e a3ef88a 98cb603 cee38fa b5ff966 cee38fa 1ad380e cee38fa 44d8f71 cee38fa 26f179f 4f784c3 cee38fa 26f179f cee38fa 98cb603 a3ef88a 98cb603 00c639f b5ff966 06f05a8 0d549a2 06f05a8 2db06c0 06f05a8 98cb603 bc6831a 98cb603 5be3251 00c639f 2db06c0 ed338d9 00c639f 6be48a4 7160f21 98cb603 00c639f cee38fa 98cb603 bc6831a 98cb603 19a2bd6 98cb603 eb9280b 26f179f a5db927 92b3ee4 98cb603 a3ef88a 98cb603 a3ef88a 98cb603 a3ef88a bc6831a 98cb603 a3ef88a 98cb603 a3ef88a 98cb603 a3ef88a 98cb603 20a4294 98cb603 20a4294 98cb603 7dd2cd1 20a4294 98cb603 20a4294 98cb603 20a4294 98cb603 bc6831a 98cb603 96ba707 98cb603 930090d 98cb603 dd9d99a 2db06c0 98cb603 a3ef88a 98cb603 2db06c0 98cb603 a3ef88a 98cb603 bc6831a 98cb603 bc6831a a3ef88a 2db06c0 98cb603 a3ef88a 8edbfbe 5c91d9e a3ef88a 205c7b8 5c91d9e d60cefe 9748eb8 d60cefe aeee50c 14b9312 5c91d9e 2c6a087 8586ed2 de2ca54 a3ef88a 2db06c0 b5f6ca6 2db06c0 ed338d9 2db06c0 b5f6ca6 2db06c0 a3ef88a 601785e a3ef88a 08fcb03 0d549a2 a3ef88a a118c0f a3ef88a 601785e 2db06c0 601785e 91ccdd9 98cb603 ed338d9 08fcb03 0d549a2 b9122dd a3ef88a 2db06c0 7e1768b 92b3ee4 7e1768b a3ef88a 92b3ee4 b9122dd a5b6525 92b3ee4 ed338d9 92b3ee4 0d549a2 b9122dd 92b3ee4 2db06c0 92b3ee4 98cb603 8edbfbe b506373 8edbfbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer
#==================================================================================
print('=' * 70)
print('Guided Accompaniment Transformer Gradio App')
print('=' * 70)
print('Loading core Guided Accompaniment Transformer modules...')
import os
import copy
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Guided Accompaniment Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('medium')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
import tqdm
print('=' * 70)
print('Loading aux Guided Accompaniment Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Guided_Accompaniment_Transformer_Trained_Model_36457_steps_0.5384_loss_0.8417_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
MAX_MELODY_NOTES = 64
MAX_GEN_TOKS = 3072
#==================================================================================
print('=' * 70)
print('Loading popular hook melodies dataset...')
popular_hook_melodies_pickle = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer',
filename='popular_hook_melodies_24_64_CC_BY_NC_SA.pickle'
)
popular_hook_melodies = TMIDIX.Tegridy_Any_Pickle_File_Reader(popular_hook_melodies_pickle)
print('=' * 70)
print('Done!')
print('=' * 70)
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 4096
PAD_IDX = 1794
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=MODEL_CHECKPOINT)
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
model = torch.compile(model, mode='max-autotune')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
def load_midi(input_midi, melody_patch=-1, use_nth_note=1):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False)
if melody_patch == -1:
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
else:
mel_score = [e for e in sp_escore_notes if e[6] == melody_patch]
if mel_score:
zscore = TMIDIX.recalculate_score_timings(mel_score)
else:
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
cscore = TMIDIX.chordify_score([1000, zscore])[:MAX_MELODY_NOTES:use_nth_note]
score = []
score_list = []
pc = cscore[0]
for c in cscore:
score.append(max(0, min(127, c[0][1]-pc[0][1])))
scl = [[max(0, min(127, c[0][1]-pc[0][1]))]]
n = c[0]
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256])
scl.append([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256])
score_list.append(scl)
pc = c
score_list.append(scl)
return score, score_list
#==================================================================================
@spaces.GPU
def Generate_Accompaniment(input_midi,
input_melody,
melody_patch,
use_nth_note,
model_temperature,
model_sampling_top_k
):
#===============================================================================
def generate_full_seq(input_seq,
max_toks=3072,
temperature=0.9,
top_k_value=15,
verbose=True
):
seq_abs_run_time = sum([t for t in input_seq if t < 128])
cur_time = 0
full_seq = copy.deepcopy(input_seq)
toks_counter = 0
while cur_time <= seq_abs_run_time+32:
if verbose:
if toks_counter % 128 == 0:
print('Generated', toks_counter, 'tokens')
x = torch.LongTensor(full_seq).cuda()
with ctx:
out = model.generate(x,
1,
filter_logits_fn=top_k,
filter_kwargs={'k': top_k_value},
temperature=temperature,
return_prime=False,
verbose=False)
y = out.tolist()[0][0]
if y < 128:
cur_time += y
full_seq.append(y)
toks_counter += 1
if toks_counter == max_toks:
return full_seq
return full_seq
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('=' * 70)
print('Requested settings:')
print('=' * 70)
if input_midi:
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('Input MIDI file name:', fn)
else:
print('Input sample melody:', input_melody)
print('Source melody patch:', melody_patch)
print('Use nth melody note:', use_nth_note)
print('Model temperature:', model_temperature)
print('Model top k:', model_sampling_top_k)
print('=' * 70)
#==================================================================
print('Prepping melody...')
if input_midi:
inp_mel = 'Custom MIDI'
score, score_list = load_midi(input_midi.name, melody_patch, use_nth_note)
else:
mel_list = [m[0].lower() for m in popular_hook_melodies]
inp_mel = random.choice(mel_list).title()
for m in mel_list:
if input_melody.lower().strip() in m:
inp_mel = m.title()
break
score = popular_hook_melodies[[m[0] for m in popular_hook_melodies].index(inp_mel)][1]
score_list = [[[score[i]], score[i+1:i+3]] for i in range(0, len(score)-3, 3)]
print('Selected melody:', inp_mel)
print('Sample score events', score[:12])
#==================================================================
print('=' * 70)
print('Generating...')
model.to(device_type)
model.eval()
#==================================================================
start_score_seq = [1792] + score + [1793]
#==================================================================
input_seq = generate_full_seq(start_score_seq,
max_toks=MAX_GEN_TOKS,
temperature=model_temperature,
top_k_value=model_sampling_top_k,
)
final_song = input_seq[len(start_score_seq):]
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
if len(final_song) != 0:
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patch = 0
channels_map = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 9, 12, 13, 14, 15]
patches_map = [40, 0, 10, 19, 24, 35, 40, 52, 56, 9, 65, 73, 0, 0, 0, 0]
velocities_map = [125, 80, 100, 80, 90, 100, 100, 80, 110, 110, 110, 110, 80, 80, 80, 80]
for m in final_song:
if 0 <= m < 128:
time += m * 32
elif 128 < m < 256:
dur = (m-128) * 32
elif 256 < m < 1792:
cha = (m-256) // 128
pitch = (m-256) % 128
channel = channels_map[cha]
patch = patches_map[channel]
vel = velocities_map[channel]
song_f.append(['note', time, dur, channel, pitch, vel, patch])
fn1 = "Guided-Accompaniment-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Guided Accompaniment Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches_map
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_title = str(inp_mel)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI melody title:', output_title)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_title, output_audio, output_plot, output_midi
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Accompaniment Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided melody accompaniment generation with transformers</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Upload source melody MIDI or enter a search query for a sample melody below")
input_midi = gr.File(label="Input MIDI",
file_types=[".midi", ".mid", ".kar"]
)
input_melody = gr.Textbox(value="Hotel California",
label="Popular melodies database search query",
info='If the query is not found, random melody will be selected. Custom MIDI overrides search query'
)
gr.Markdown("## Generation options")
melody_patch = gr.Slider(-1, 127, value=-1, step=1, label="Source melody MIDI patch")
use_nth_note = gr.Slider(1, 8, value=1, step=1, label="Use each nth melody note")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_sampling_top_k = gr.Slider(1, 100, value=15, step=1, label="Model sampling top k value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Generation results")
output_title = gr.Textbox(label="MIDI melody title")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
generate_btn.click(Generate_Accompaniment,
[input_midi,
input_melody,
melody_patch,
use_nth_note,
model_temperature,
model_sampling_top_k
],
[output_title,
output_audio,
output_plot,
output_midi
]
)
gr.Examples(
[["USSR-National-Anthem-Seed-Melody.mid", "Custom MIDI", -1, 1, 0.9, 15],
["Sparks-Fly-Seed-Melody.mid", "Custom MIDI", -1, 1, 0.9, 15]
],
[input_midi,
input_melody,
melody_patch,
use_nth_note,
model_temperature,
model_sampling_top_k
],
[output_title,
output_audio,
output_plot,
output_midi
],
Generate_Accompaniment
)
#==================================================================================
demo.launch()
#================================================================================== |