Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,896 Bytes
a3ef88a 4128ca7 4d440f4 a3ef88a 16dca97 4128ca7 16dca97 a3ef88a d60cefe a3ef88a 7dd2cd1 a3ef88a d60cefe a3ef88a b9ced4c a3ef88a d60cefe a3ef88a 4154701 a3ef88a dd9d99a 4851155 27d7113 dd9d99a 465603c 053cdcc a3ef88a 83355ca a3ef88a 8586ed2 7b3dcbc a3ef88a dd9d99a b9ced4c dd9d99a 27d7113 dd9d99a d60cefe dd9d99a de82fc3 dd9d99a 0792426 3eaad6d e02c3f7 0792426 2ec9c41 a3ef88a 39917f5 a3ef88a 39917f5 a3ef88a 39917f5 a3ef88a 39917f5 a3ef88a 39917f5 a3ef88a 39917f5 a3ef88a 39917f5 4851155 938852f a3ef88a 39917f5 a3ef88a 39917f5 a3ef88a 2ec9c41 a3ef88a 39917f5 27d7113 938852f 39917f5 63ac720 4851155 a3ef88a d60cefe a3ef88a d60cefe a3ef88a d60cefe a3ef88a 4154701 a3ef88a 890ef0c e02c3f7 a3ef88a 39917f5 a3ef88a 890ef0c e02c3f7 3eaad6d a3ef88a bc6831a a3ef88a 39917f5 a3ef88a 890ef0c bc6831a 890ef0c 39917f5 a3ef88a 890ef0c 6c62733 8586ed2 e02c3f7 a3ef88a 1dc1cfe 2ec9c41 673739f a3ef88a 890ef0c a3ef88a e02c3f7 a3ef88a 7b3dcbc a3ef88a 2ec9c41 a3ef88a 7b3dcbc a3ef88a 0489b1b d60cefe 0489b1b 8586ed2 a3ef88a 8586ed2 a3ef88a 890ef0c 6c62733 8586ed2 dd9d99a e02c3f7 a3ef88a 7dd2cd1 bc6831a 930090d bc6831a 930090d 6da0de9 930090d dd9d99a 20bc1d1 e02c3f7 2ec9c41 6f4c5be dd9d99a 63a4ff8 930090d 63a4ff8 6c62733 63a4ff8 a3ef88a 890ef0c a3ef88a 6c62733 8586ed2 e02c3f7 a3ef88a 8586ed2 bc6831a a3ef88a 91ccdd9 a3ef88a 91ccdd9 a3ef88a 8586ed2 2ec9c41 a3ef88a c752e13 8586ed2 a3ef88a 91ccdd9 d7ab2ca a3ef88a d7ab2ca 2ec9c41 890ef0c a3ef88a 8edbfbe 5c91d9e a3ef88a 205c7b8 5c91d9e 932ddff 1446958 5c91d9e d60cefe 14b9312 d60cefe 14b9312 9975bb4 5c91d9e 14b9312 d60cefe aeee50c 14b9312 5c91d9e 2c6a087 8586ed2 8f73deb a3ef88a 8586ed2 a3ef88a 6c62733 a3ef88a 7e1768b a3ef88a 7e1768b a3ef88a eb3b64b 91ccdd9 7e1768b a3ef88a 7e1768b a3ef88a 5c91d9e 8586ed2 a3ef88a 8edbfbe b506373 8edbfbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer
#==================================================================================
print('=' * 70)
print('Guided Accompaniment Transformer Gradio App')
print('=' * 70)
print('Loading core Guided Accompaniment Transformer modules...')
import os
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Guided Accompaniment Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
print('=' * 70)
print('Loading aux Guided Accompaniment Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINTS = {
'with velocity - 3 epochs': 'Monster_Piano_Transformer_Velocity_Trained_Model_59896_steps_0.9055_loss_0.735_acc.pth',
'without velocity - 3 epochs': 'Monster_Piano_Transformer_No_Velocity_Trained_Model_69412_steps_0.8577_loss_0.7442_acc.pth',
'without velocity - 7 epochs': 'Monster_Piano_Transformer_No_Velocity_Trained_Model_161960_steps_0.7775_loss_0.7661_acc.pth'
}
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
NUM_OUT_BATCHES = 12
PREVIEW_LENGTH = 120 # in tokens
#==================================================================================
def load_model(model_selector):
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 2048
if model_selector == 'with velocity - 3 epochs':
PAD_IDX = 512
else:
PAD_IDX = 384
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=MODEL_CHECKPOINTS[model_selector])
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
model = torch.compile(model, mode='max-autotune')
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
return [model, ctx]
#==================================================================================
def load_midi(input_midi, model_selector=''):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
cscore = TMIDIX.chordify_score([1000, zscore])
score = []
pc = cscore[0]
for c in cscore:
score.append(max(0, min(127, c[0][1]-pc[0][1])))
for n in c:
if model_selector == 'with velocity - 3 epochs':
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256, max(1, min(127, n[5]))+384])
else:
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256])
pc = c
return score
#==================================================================================
def save_midi(tokens, batch_number=None, model_selector=''):
song = tokens
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patch = 0
patches = [0] * 16
for m in song:
if 0 <= m < 128:
time += m * 32
elif 128 < m < 256:
dur = (m-128) * 32
elif 256 < m < 384:
pitch = (m-256)
if model_selector == 'without velocity - 3 epochs' or model_selector == 'without velocity - 7 epochs':
song_f.append(['note', time, dur, 0, pitch, max(40, pitch), 0])
elif 384 < m < 512:
vel = (m-384)
if model_selector == 'with velocity - 3 epochs':
song_f.append(['note', time, dur, 0, pitch, vel, 0])
if batch_number == None:
fname = 'Guided-Accompaniment-Transformer-Music-Composition'
else:
fname = 'Guided-Accompaniment-Transformer-Music-Composition_'+str(batch_number)
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Guided Accompaniment Transformer',
output_file_name = fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
verbose=False
)
return song_f
#==================================================================================
@spaces.GPU
def generate_music(prime,
num_gen_tokens,
num_mem_tokens,
num_gen_batches,
model_temperature,
# model_sampling_top_p,
model_state
):
if not prime:
inputs = [0]
else:
inputs = prime[-num_mem_tokens:]
model = model_state[0]
ctx = model_state[1]
model.cuda()
model.eval()
print('Generating...')
inp = [inputs] * num_gen_batches
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model.generate(inp,
num_gen_tokens,
#filter_logits_fn=top_p,
#filter_kwargs={'thres': model_sampling_top_p},
temperature=model_temperature,
return_prime=False,
verbose=False)
output = out.tolist()
print('Done!')
print('=' * 70)
return output
#==================================================================================
def generate_callback(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
model_temperature,
# model_sampling_top_p,
final_composition,
generated_batches,
block_lines,
model_state
):
generated_batches = []
if not final_composition and input_midi is not None:
final_composition = load_midi(input_midi, model_selector=model_state[2])[:num_prime_tokens]
midi_score = save_midi(final_composition, model_selector=model_state[2])
block_lines.append(midi_score[-1][1] / 1000)
batched_gen_tokens = generate_music(final_composition,
num_gen_tokens,
num_mem_tokens,
NUM_OUT_BATCHES,
model_temperature,
# model_sampling_top_p,
model_state
)
outputs = []
for i in range(len(batched_gen_tokens)):
tokens = batched_gen_tokens[i]
# Preview
tokens_preview = final_composition[-PREVIEW_LENGTH:]
# Save MIDI to a temporary file
midi_score = save_midi(tokens_preview + tokens, i, model_selector=model_state[2])
# MIDI plot
if len(final_composition) > PREVIEW_LENGTH:
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Batch # ' + str(i),
preview_length_in_notes=int(PREVIEW_LENGTH / 3),
return_plt=True
)
else:
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Batch # ' + str(i),
return_plt=True
)
# File name
fname = 'Guided-Accompaniment-Transformer-Music-Composition_'+str(i)
# Save audio to a temporary file
midi_audio = midi_to_colab_audio(fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
outputs.append([(16000, midi_audio), midi_plot, tokens])
return outputs, final_composition, generated_batches, block_lines
#==================================================================================
def generate_callback_wrapper(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
model_temperature,
# model_sampling_top_p,
final_composition,
generated_batches,
block_lines,
model_selector,
model_state
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
if input_midi is not None:
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('Input file name:', fn)
print('Selected model type:', model_selector)
if not model_state:
model_state = load_model(model_selector)
model_state.append(model_selector)
else:
if model_selector != model_state[2]:
print('=' * 70)
print('Switching model...')
model_state = load_model(model_selector)
model_state.append(model_selector)
print('=' * 70)
print('Num prime tokens:', num_prime_tokens)
print('Num gen tokens:', num_gen_tokens)
print('Num mem tokens:', num_mem_tokens)
print('Model temp:', model_temperature)
# print('Model top_p:', model_sampling_top_p)
print('=' * 70)
result = generate_callback(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
model_temperature,
# model_sampling_top_p,
final_composition,
generated_batches,
block_lines,
model_state
)
generated_batches = [sublist[-1] for sublist in result[0]]
print('=' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
print('*' * 70)
return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]] + [model_state])
#==================================================================================
def reset(final_composition=[], generated_batches=[], block_lines=[], model_state=[]):
final_composition = []
generated_batches = []
block_lines = []
model_state = []
return final_composition, generated_batches, block_lines
#==================================================================================
def reset_demo(final_composition=[], generated_batches=[], block_lines=[], model_state=[]):
final_composition = []
generated_batches = []
block_lines = []
model_state = []
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
demo.load(reset_demo)
#==================================================================================
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Accompaniment Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided melody accompaniment generation with transformers</h1>")
gr.HTML("""
Check out <a href="https://github.com/asigalov61/monsterpianotransformer">Guided Accompaniment Transformer</a> on GitHub or on
<p>
<a href="https://pypi.org/project/monsterpianotransformer/">
<img src="https://upload.wikimedia.org/wikipedia/commons/6/64/PyPI_logo.svg" alt="PyPI Project" style="width: 100px; height: auto;">
</a> or
<a href="https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
[final_composition, generated_batches, block_lines])
gr.Markdown("## Generate")
num_gen_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of tokens to generate")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Results")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
outputs.extend([model_state])
generate_btn.click(generate_accompaniment,
[input_midi,
num_gen_tokens,
model_temperature,
],
[
output_audio,
output_plot,
output_midi,
]
)
#==================================================================================
demo.unload(reset_demo)
#==================================================================================
demo.launch()
#================================================================================== |