File size: 6,380 Bytes
133ccd4
 
 
96007f4
8453f63
 
 
133ccd4
 
 
 
 
 
de46ee3
133ccd4
 
df03c6b
 
8453f63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c80330f
 
8453f63
c80330f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8453f63
 
186f625
 
 
 
 
 
 
 
df03c6b
 
186f625
df03c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c274d
 
df03c6b
 
 
a8c784b
df03c6b
 
 
aa942ba
de46ee3
186f625
de46ee3
 
23c274d
 
 
 
de46ee3
23c274d
 
de46ee3
 
 
186f625
 
 
 
 
 
 
 
 
de46ee3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import glob
import os.path

import torch
import torch.nn.functional as F

import gradio as gr
import numpy as np
import onnxruntime as rt
import tqdm
import json

from midi_synthesizer import synthesis
import TMIDIX

in_space = os.getenv("SYSTEM") == "spaces"

#=================================================================================================

def generate(
            start_tokens,
            seq_len,
            max_seq_len = 2048,
            temperature = 0.9,
            verbose=True,
            return_prime=False,
            ):

    out = torch.LongTensor([start_tokens])

    st = len(start_tokens)

    if verbose:
      print("Generating sequence of max length:", seq_len)

    for s in range(seq_len):
        x = out[:, -max_seq_len:]

        torch_in = x.tolist()[0]

        logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1]
        
        filtered_logits = logits

        probs = F.softmax(filtered_logits / temperature, dim=-1)

        sample = torch.multinomial(probs, 1)

        out = torch.cat((out, sample), dim=-1)

        if verbose:
          if s % 32 == 0:
            print(s, '/', seq_len)

    if return_prime:
      return out[:, :]
    
    else:
      return out[:, st:]
        
#=================================================================================================

def GenerateMIDI(params):
    
    melody_chords_f = generate([3087, 3073+1, 3075+1], 512)
    
    melody_chords_f = melody_chords_f.tolist()[0]
    
    print('=' * 70)
    print('Sample INTs', melody_chords_f[:12])
    print('=' * 70)
    
    if len(melody_chords_f) != 0:
    
        song = melody_chords_f
        song_f = []
        time = 0
        dur = 0
        vel = 0
        pitch = 0
        channel = 0
    
        for ss in song:
    
          if ss > 0 and ss < 256:
    
              time += ss * 8
    
          if ss >= 256 and ss < 1280:
    
              dur = ((ss-256) // 8) * 32
              vel = (((ss-256) % 8)+1) * 15
    
          if ss >= 1280 and ss < 2816:
              channel = (ss-1280) // 128
              pitch = (ss-1280) % 128
    
              song_f.append(['note', time, dur, channel, pitch, vel ])
    
        detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
                                                            output_signature = 'Allegro Music Transformer',
                                                            output_file_name = 'Allegro-Music-Transformer-Music-Composition',
                                                            track_name='Project Los Angeles',
                                                            list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0],
                                                            number_of_ticks_per_quarter=500)
        print('=' * 70)
        
#=================================================================================================

def cancel_run(mid_seq):
    if mid_seq is None:
        return None, None
    mid = tokenizer.detokenize(mid_seq)
    with open(f"output.mid", 'wb') as f:
        f.write(MIDI.score2midi(mid))
    audio = synthesis(MIDI.score2opus(mid), soundfont_path)
    return "output.mid", (44100, audio), [create_msg("visualizer_end", None)]

def load_javascript(dir="javascript"):
    scripts_list = glob.glob(f"*.js")
    javascript = ""
    for path in scripts_list:
        with open(path, "r", encoding="utf8") as jsfile:
            javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
    template_response_ori = gr.routes.templates.TemplateResponse

    def template_response(*args, **kwargs):
        res = template_response_ori(*args, **kwargs)
        res.body = res.body.replace(
            b'</head>', f'{javascript}</head>'.encode("utf8"))
        res.init_headers()
        return res

    gr.routes.templates.TemplateResponse = template_response


class JSMsgReceiver(gr.HTML):

    def __init__(self, **kwargs):
        super().__init__(elem_id="msg_receiver", visible=False, **kwargs)

    def postprocess(self, y):
        if y:
            y = f"<p>{json.dumps(y)}</p>"
        return super().postprocess(y)

    def get_block_name(self) -> str:
        return "html"

#=================================================================================================

if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--port", type=int, default=7860, help="gradio server port")
    opt = parser.parse_args()

    session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=['CUDAExecutionProvider'])

    # load_javascript()
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>")
        gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n"
                    "Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n"
                    "Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n"
                    "[Open In Colab]"
                    "(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)"
                    " for faster execution and endless generation"
                        )
        
        js_msg = JSMsgReceiver()
        
        run_btn = gr.Button("generate", variant="primary")
        stop_btn = gr.Button("stop and output")

        output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
        output_midi = gr.File(label="output midi", file_types=[".mid"])
        run_event = run_btn.click(run, [output_midi_seq, output_midi, output_audio, js_msg])
        stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
        
        app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True)