Upload TMIDIX.py
Browse files
TMIDIX.py
CHANGED
@@ -6391,35 +6391,16 @@ def transpose_pitches(pitches, transpose_value=0):
|
|
6391 |
|
6392 |
###################################################################################
|
6393 |
|
6394 |
-
def reverse_enhanced_score_notes(
|
6395 |
|
6396 |
-
score = recalculate_score_timings(
|
6397 |
|
6398 |
-
|
|
|
6399 |
|
6400 |
-
|
6401 |
|
6402 |
-
|
6403 |
-
abs_dtimes.append(cscore[i+1][0][1])
|
6404 |
-
abs_dtimes.append(cscore[-1][0][1]+cscore[-1][0][2])
|
6405 |
-
|
6406 |
-
new_dtimes = []
|
6407 |
-
pt = abs_dtimes[-1]
|
6408 |
-
|
6409 |
-
for t in abs_dtimes[::-1]:
|
6410 |
-
new_dtimes.append(abs(pt-t))
|
6411 |
-
pt = t
|
6412 |
-
|
6413 |
-
new_mel = copy.deepcopy(cscore[::-1])
|
6414 |
-
|
6415 |
-
time = 0
|
6416 |
-
|
6417 |
-
for i, t in enumerate(new_mel):
|
6418 |
-
time += new_dtimes[i]
|
6419 |
-
for tt in t:
|
6420 |
-
tt[1] = time
|
6421 |
-
|
6422 |
-
return recalculate_score_timings(flatten(new_mel))
|
6423 |
|
6424 |
###################################################################################
|
6425 |
|
@@ -6434,6 +6415,8 @@ def count_patterns(lst, sublist):
|
|
6434 |
idx += 1
|
6435 |
return count
|
6436 |
|
|
|
|
|
6437 |
def find_lrno_patterns(seq):
|
6438 |
|
6439 |
all_seqs = Counter()
|
@@ -6935,13 +6918,21 @@ def binary_matrix_to_original_escore_notes(binary_matrix,
|
|
6935 |
count += 1
|
6936 |
|
6937 |
else:
|
6938 |
-
|
|
|
|
|
|
|
|
|
6939 |
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6940 |
|
6941 |
-
|
6942 |
|
6943 |
if count > 1:
|
6944 |
result.append([len(binary_matrix)-count, count, j, binary_matrix[-1][j]])
|
|
|
|
|
|
|
|
|
6945 |
|
6946 |
result.sort(key=lambda x: (x[0], -x[2]))
|
6947 |
|
@@ -7776,9 +7767,9 @@ def fixed_escore_notes_timings(escore_notes,
|
|
7776 |
def cubic_kernel(x):
|
7777 |
abs_x = abs(x)
|
7778 |
if abs_x <= 1:
|
7779 |
-
return
|
7780 |
elif abs_x <= 2:
|
7781 |
-
return
|
7782 |
else:
|
7783 |
return 0
|
7784 |
|
@@ -7791,17 +7782,25 @@ def resize_matrix(matrix, new_height, new_width):
|
|
7791 |
|
7792 |
for i in range(new_height):
|
7793 |
for j in range(new_width):
|
7794 |
-
|
7795 |
old_i = i * old_height / new_height
|
7796 |
old_j = j * old_width / new_width
|
7797 |
|
7798 |
value = 0
|
|
|
7799 |
for m in range(-1, 3):
|
7800 |
for n in range(-1, 3):
|
7801 |
i_m = min(max(int(old_i) + m, 0), old_height - 1)
|
7802 |
j_n = min(max(int(old_j) + n, 0), old_width - 1)
|
|
|
|
|
|
|
|
|
7803 |
weight = cubic_kernel(old_i - i_m) * cubic_kernel(old_j - j_n)
|
7804 |
value += matrix[i_m][j_n] * weight
|
|
|
|
|
|
|
|
|
7805 |
|
7806 |
resized_matrix[i][j] = int(value > 0.5)
|
7807 |
|
|
|
6391 |
|
6392 |
###################################################################################
|
6393 |
|
6394 |
+
def reverse_enhanced_score_notes(escore_notes):
|
6395 |
|
6396 |
+
score = recalculate_score_timings(escore_notes)
|
6397 |
|
6398 |
+
ematrix = escore_notes_to_escore_matrix(score, reverse_matrix=True)
|
6399 |
+
e_score = escore_matrix_to_original_escore_notes(ematrix)
|
6400 |
|
6401 |
+
reversed_score = recalculate_score_timings(e_score)
|
6402 |
|
6403 |
+
return reversed_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6404 |
|
6405 |
###################################################################################
|
6406 |
|
|
|
6415 |
idx += 1
|
6416 |
return count
|
6417 |
|
6418 |
+
###################################################################################
|
6419 |
+
|
6420 |
def find_lrno_patterns(seq):
|
6421 |
|
6422 |
all_seqs = Counter()
|
|
|
6918 |
count += 1
|
6919 |
|
6920 |
else:
|
6921 |
+
if count > 1:
|
6922 |
+
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6923 |
+
|
6924 |
+
else:
|
6925 |
+
if binary_matrix[i-1][j] != 0:
|
6926 |
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6927 |
|
6928 |
+
count = 1
|
6929 |
|
6930 |
if count > 1:
|
6931 |
result.append([len(binary_matrix)-count, count, j, binary_matrix[-1][j]])
|
6932 |
+
|
6933 |
+
else:
|
6934 |
+
if binary_matrix[i-1][j] != 0:
|
6935 |
+
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6936 |
|
6937 |
result.sort(key=lambda x: (x[0], -x[2]))
|
6938 |
|
|
|
7767 |
def cubic_kernel(x):
|
7768 |
abs_x = abs(x)
|
7769 |
if abs_x <= 1:
|
7770 |
+
return 1.5 * abs_x**3 - 2.5 * abs_x**2 + 1
|
7771 |
elif abs_x <= 2:
|
7772 |
+
return -0.5 * abs_x**3 + 2.5 * abs_x**2 - 4 * abs_x + 2
|
7773 |
else:
|
7774 |
return 0
|
7775 |
|
|
|
7782 |
|
7783 |
for i in range(new_height):
|
7784 |
for j in range(new_width):
|
|
|
7785 |
old_i = i * old_height / new_height
|
7786 |
old_j = j * old_width / new_width
|
7787 |
|
7788 |
value = 0
|
7789 |
+
total_weight = 0
|
7790 |
for m in range(-1, 3):
|
7791 |
for n in range(-1, 3):
|
7792 |
i_m = min(max(int(old_i) + m, 0), old_height - 1)
|
7793 |
j_n = min(max(int(old_j) + n, 0), old_width - 1)
|
7794 |
+
|
7795 |
+
if matrix[i_m][j_n] == 0:
|
7796 |
+
continue
|
7797 |
+
|
7798 |
weight = cubic_kernel(old_i - i_m) * cubic_kernel(old_j - j_n)
|
7799 |
value += matrix[i_m][j_n] * weight
|
7800 |
+
total_weight += weight
|
7801 |
+
|
7802 |
+
if total_weight > 0:
|
7803 |
+
value /= total_weight
|
7804 |
|
7805 |
resized_matrix[i][j] = int(value > 0.5)
|
7806 |
|