import numpy as np from skimage.transform import resize from src.config.config import IMG_ROWS, IMG_COLS from src.data.data_loader import load_train_data, load_test_data def preprocess(imgs): imgs_p = np.ndarray((imgs.shape[0], IMG_ROWS, IMG_COLS), dtype=np.uint8) for i in range(imgs.shape[0]): imgs_p[i] = resize(imgs[i], (IMG_COLS, IMG_ROWS), preserve_range=True) imgs_p = imgs_p[..., np.newaxis] return imgs_p def load_and_preprocess_train_data(): imgs_train, imgs_mask_train = load_train_data() imgs_train = preprocess(imgs_train) imgs_mask_train = preprocess(imgs_mask_train) return imgs_train, imgs_mask_train def load_and_preprocess_test_data(): imgs_test, imgs_id_test = load_test_data() imgs_test = preprocess(imgs_test) return imgs_test, imgs_id_test