Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from src.model.model import get_unet | |
| # from src.dicom_handler.dicom_predictor import predict_dicom | |
| from src.nifti_handler.nifti_predictor import predict_nifti | |
| # Load the model and weights | |
| model = get_unet() | |
| model.load_weights('models/weights.h5') | |
| # Define mean and std (should have saved these during training) | |
| mean = 0 # Replace with actual mean | |
| std = 1 # Replace with actual std | |
| def predict_liver_segmentation(file): | |
| # segmented = predict_dicom(file.name, 'models/weights.h5') | |
| segmented = predict_nifti(file.name, 'models/weights.h5') | |
| return segmented | |
| iface = gr.Interface( | |
| fn=predict_liver_segmentation, | |
| inputs=gr.File(label="Upload NIfTI file (.nii.gz)"), | |
| outputs=gr.Image(label="Segmentation Result"), | |
| title="Liver Segmentation from NIfTI", | |
| description="Upload a liver CT scan NIfTI file (.nii.gz) to get the segmentation result." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch(share=True) |