ashutosh-pathak's picture
Restructure + Add Gradio Interface
8444121
raw
history blame
1.28 kB
import os
import numpy as np
from skimage.exposure import rescale_intensity
from skimage.segmentation import mark_boundaries
from skimage import io
from src.model.model import get_unet
from src.data.data_processing import load_and_preprocess_test_data
def predict(model, mean, std):
print('-'*30)
print('Loading and preprocessing test data...')
print('-'*30)
imgs_test, imgs_id_test = load_and_preprocess_test_data()
imgs_test = imgs_test.astype('float32')
imgs_test -= mean
imgs_test /= std
print('-'*30)
print('Loading saved weights...')
print('-'*30)
model.load_weights('weights.h5')
print('-'*30)
print('Predicting masks on test data...')
print('-'*30)
imgs_mask_test = model.predict(imgs_test, verbose=1)
np.save('imgs_mask_test.npy', imgs_mask_test)
print('-' * 30)
print('Saving predicted masks to files...')
print('-' * 30)
pred_dir = 'preds'
if not os.path.exists(pred_dir):
os.mkdir(pred_dir)
for k in range(len(imgs_mask_test)):
a = rescale_intensity(imgs_test[k][:,:,0], out_range=(-1,1))
b = (imgs_mask_test[k][:,:,0]).astype('uint8')
io.imsave(os.path.join(pred_dir, str(k) + '_pred.png'), mark_boundaries(a,b))
return imgs_mask_test