Spaces:
Sleeping
Sleeping
File size: 746 Bytes
8444121 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
import numpy as np
from skimage.segmentation import mark_boundaries
from ..model.model import get_unet
from .dicom_utils import load_and_preprocess_dicom
def predict_dicom(dicom_path, weights_path, mean=0, std=1):
"""Predict liver segmentation for a single DICOM file."""
# Load and preprocess the DICOM file
img = load_and_preprocess_dicom(dicom_path)
img = (img - mean) / std
# Load the model and weights
model = get_unet()
model.load_weights(weights_path)
# Predict
mask = model.predict(np.expand_dims(img, axis=0))[0]
mask = (mask > 0.5).astype('uint8')
# Overlay the mask on the original image
segmented = mark_boundaries(img, mask[:,:,0], color=(1,0,0), mode='thick')
return segmented |