Spaces:
Sleeping
Sleeping
File size: 5,361 Bytes
eeb3be6 7097291 eeb3be6 0dcfd6e eeb3be6 0dcfd6e eeb3be6 0dcfd6e eeb3be6 db3e23f eeb3be6 0dcfd6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# import chromadb
# from chromadb.utils import embedding_functions
# from sentence_transformers import SentenceTransformer
# from transformers import pipeline
# import streamlit as st
# import fitz # PyMuPDF for PDF parsing
# # Step 1: Setup ChromaDB
# def setup_chromadb():
# # Initialize ChromaDB in-memory instance
# client = chromadb.Client()
# try:
# client.delete_collection("pdf_data")
# print("Existing collection 'pdf_data' deleted.")
# except:
# print("Collection 'pdf_data' not found, creating a new one.")
# # Create a new collection with the embedding function
# ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="sentence-transformers/all-MiniLM-L6-v2")
# collection = client.create_collection("pdf_data", embedding_function=ef)
# return client, collection
# # Step 2: Extract Text from PDF
# def extract_text_from_pdf(pdf_path):
# pdf_text = ""
# with fitz.open(pdf_path) as doc:
# for page in doc:
# pdf_text += page.get_text()
# return pdf_text
# # Step 3: Add Extracted Text to Vector Database
# def add_pdf_text_to_db(collection, pdf_text):
# sentences = pdf_text.split("\n") # Split text into lines for granularity
# for idx, sentence in enumerate(sentences):
# if sentence.strip(): # Avoid empty lines
# collection.add(
# ids=[f"pdf_text_{idx}"],
# documents=[sentence],
# metadatas={"line_number": idx, "text": sentence}
# )
# # Step 4: Query Function
# def query_pdf_data(collection, query, retriever_model):
# results = collection.query(
# query_texts=[query],
# n_results=3
# )
# context = " ".join([doc for doc in results["documents"][0]])
# answer = retriever_model(f"Context: {context}\nQuestion: {query}")
# return answer, results["metadatas"]
# # Streamlit Interface
# def main():
# st.title("PDF Chatbot with Retrieval-Augmented Generation")
# st.write("Upload a PDF, and ask questions about its content!")
# # Initialize components
# client, collection = setup_chromadb()
# retriever_model = pipeline("text2text-generation", model="google/flan-t5-small") # Free LLM
# # File upload
# uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
# if uploaded_file:
# st.write("Extracting text and populating the database...")
# pdf_text = extract_text_from_pdf(uploaded_file)
# add_pdf_text_to_db(collection, pdf_text)
# st.success("PDF text has been added to the database. You can now query it!")
# # Query Input
# query = st.text_input("Enter your query about the PDF:")
# if query:
# try:
# answer, metadata = query_pdf_data(collection, query, retriever_model)
# st.subheader("Answer:")
# st.write(answer[0]['generated_text'])
# st.subheader("Retrieved Context:")
# for meta in metadata[0]:
# st.write(meta)
# except Exception as e:
# st.error(f"An error occurred: {str(e)}")
# if __name__ == "__main__":
# main()
import streamlit as st
from streamlit_chromadb_connection.chromadb_connection import ChromadbConnection
configuration = {
"client": "PersistentClient",
"path": "/tmp/.chroma"
}
collection_name = "documents_collection"
conn = st.connection("chromadb",
type=ChromadbConnection,
**configuration)
documents_collection_df = conn.get_collection_data(collection_name)
st.dataframe(documents_collection_df)
# import tempfile
# import PyPDF2
# import streamlit as st
# from transformers import GPT2LMHeadModel, GPT2Tokenizer
# # Load pre-trained GPT-3 model and tokenizer
# tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
# model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
# def extract_text_from_pdf(file_path):
# text = ""
# with open(file_path, "rb") as f:
# reader = PyPDF2.PdfFileReader(f)
# for page_num in range(reader.numPages):
# text += reader.getPage(page_num).extractText()
# return text
# def generate_response(user_input):
# input_ids = tokenizer.encode(user_input, return_tensors="pt")
# output = model.generate(input_ids, max_length=100, num_return_sequences=1, temperature=0.7)
# response = tokenizer.decode(output[0], skip_special_tokens=True)
# return response
# def main():
# st.title("PDF Chatbot")
# pdf_file = st.file_uploader("Upload an pdf file", type=["pdf"], accept_multiple_files=False)
# if pdf_file is not None:
# with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
# tmp_file.write(pdf_file.read())
# st.success("PDF file successfully uploaded and stored temporally.")
# file_path = tmp_file.name
# pdf_text = extract_text_from_pdf(file_path)
# st.text_area("PDF Content", pdf_text)
# else:
# st.markdown('File not found!')
# user_input = st.text_input("You:", "")
# if st.button("Send"):
# response = generate_response(user_input)
# st.text_area("Chatbot:", response)
# if __name__ == "__main__":
# main()
|