Spaces:
Sleeping
Sleeping
File size: 6,808 Bytes
cf2d248 7e364b6 48010b4 7e364b6 eeb3be6 0dcfd6e 7e364b6 1788a8d 7e364b6 1788a8d cf2d248 d051bce 7e364b6 d051bce 7e364b6 d051bce cf2d248 d051bce f4c2b4e d051bce 0c3d325 6580a7b f4c2b4e 7e364b6 cf2d248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# import chromadb
# from chromadb.utils import embedding_functions
# from chromadb.config import Settings
# from sentence_transformers import SentenceTransformer
# from transformers import pipeline
# import streamlit as st
# import fitz # PyMuPDF for PDF parsing
# # Configure ChromaDB with persistent SQLite database
# config = Settings(
# persist_directory="./chromadb_data",
# chroma_db_impl="sqlite",
# )
# # Initialize persistent client with SQLite
# def setup_chromadb():
# client = chromadb.PersistentClient(path="./chromadb_data")
# collection = client.get_or_create_collection(
# name="pdf_data",
# embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
# model_name="sentence-transformers/all-MiniLM-L6-v2"
# ),
# )
# return client, collection
# def extract_text_from_pdf(uploaded_file):
# with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
# text = ""
# for page in doc:
# text += page.get_text()
# return text
# def add_pdf_text_to_db(collection, pdf_text):
# sentences = pdf_text.split("\n") # Split text into lines for granularity
# for idx, sentence in enumerate(sentences):
# if sentence.strip(): # Avoid empty lines
# collection.add(
# ids=[f"pdf_text_{idx}"],
# documents=[sentence],
# metadatas={"line_number": idx, "text": sentence}
# )
# def query_pdf_data(collection, query, retriever_model):
# results = collection.query(
# query_texts=[query],
# n_results=3
# )
# context = " ".join([doc for doc in results["documents"][0]])
# answer = retriever_model(f"Context: {context}\nQuestion: {query}")
# return answer, results["metadatas"]
# # Streamlit Interface
# def main():
# st.title("PDF Chatbot with Retrieval-Augmented Generation")
# st.write("Upload a PDF, and ask questions about its content!")
# # Initialize components
# client, collection = setup_chromadb()
# retriever_model = pipeline("text2text-generation", model="google/flan-t5-small") # Free LLM
# # File upload
# uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
# if uploaded_file:
# try:
# pdf_text = extract_text_from_pdf(uploaded_file)
# st.success("Text extracted successfully!")
# st.text_area("Extracted Text:", pdf_text, height=300)
# add_pdf_text_to_db(collection, pdf_text)
# st.success("PDF text has been added to the database. You can now query it!")
# except Exception as e:
# st.error(f"Error extracting text: {e}")
# query = st.text_input("Enter your query about the PDF:")
# if query:
# try:
# answer, metadata = query_pdf_data(collection, query, retriever_model)
# st.subheader("Answer:")
# st.write(answer[0]['generated_text'])
# st.subheader("Retrieved Context:")
# for meta in metadata[0]:
# st.write(meta)
# except Exception as e:
# st.error(f"An error occurred: {str(e)}")
# if __name__ == "__main__":
# main()
import chromadb
from chromadb.utils import embedding_functions
from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import streamlit as st
import fitz # PyMuPDF for PDF parsing
# Configure ChromaDB with persistent SQLite database
config = Settings(
persist_directory="./chromadb_data",
chroma_db_impl="sqlite",
)
# Initialize persistent client with SQLite
def setup_chromadb():
client = chromadb.PersistentClient(path="./chromadb_data")
collection = client.get_or_create_collection(
name="pdf_data",
embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="sentence-transformers/all-MiniLM-L6-v2"
),
)
return client, collection
# Clear the collection
def clear_collection(collection):
collection.delete(where={}) # Delete all entries in the collection
def extract_text_from_pdf(uploaded_file):
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
text = ""
for page in doc:
text += page.get_text()
return text
def add_pdf_text_to_db(collection, pdf_text):
sentences = pdf_text.split("\n") # Split text into lines for granularity
for idx, sentence in enumerate(sentences):
if sentence.strip(): # Avoid empty lines
collection.add(
ids=[f"pdf_text_{idx}"],
documents=[sentence],
metadatas={"line_number": idx, "text": sentence}
)
def query_pdf_data(collection, query, retriever_model):
results = collection.query(
query_texts=[query],
n_results=3
)
context = " ".join([doc for doc in results["documents"][0]])
answer = retriever_model(f"Context: {context}\nQuestion: {query}")
return answer, results["metadatas"]
# Streamlit Interface
def main():
st.title("PDF Chatbot with Retrieval-Augmented Generation")
st.write("Upload a PDF, and ask questions about its content!")
# Initialize components
client, collection = setup_chromadb()
retriever_model = pipeline("text2text-generation", model="google/flan-t5-small") # Free LLM
# File upload
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
if uploaded_file:
try:
# Clear existing data
clear_collection(collection)
st.info("Existing data cleared from the database.")
# Extract and add new data
pdf_text = extract_text_from_pdf(uploaded_file)
st.success("Text extracted successfully!")
st.text_area("Extracted Text:", pdf_text, height=300)
add_pdf_text_to_db(collection, pdf_text)
st.success("PDF text has been added to the database. You can now query it!")
except Exception as e:
st.error(f"Error extracting text: {e}")
query = st.text_input("Enter your query about the PDF:")
if query:
try:
answer, metadata = query_pdf_data(collection, query, retriever_model)
st.subheader("Answer:")
st.write(answer[0]['generated_text'])
st.subheader("Retrieved Context:")
for meta in metadata[0]:
st.write(meta)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()
|