File size: 4,763 Bytes
0dcfd6e
 
 
 
7097291
0dcfd6e
7097291
0dcfd6e
 
 
 
 
 
 
 
 
 
 
 
 
7097291
0dcfd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7097291
0dcfd6e
7097291
0dcfd6e
 
7097291
0dcfd6e
 
 
7097291
0dcfd6e
 
 
 
 
 
 
7097291
0dcfd6e
 
 
 
 
 
 
 
 
 
 
 
7097291
 
 
0dcfd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import chromadb
from chromadb.utils import embedding_functions
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import streamlit as st
import fitz  # PyMuPDF for PDF parsing

# Step 1: Setup ChromaDB
def setup_chromadb():
    # Initialize ChromaDB in-memory instance
    client = chromadb.Client()
    try:
        client.delete_collection("pdf_data")
        print("Existing collection 'pdf_data' deleted.")
    except:
        print("Collection 'pdf_data' not found, creating a new one.")
    # Create a new collection with the embedding function
    ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="sentence-transformers/all-MiniLM-L6-v2")
    collection = client.create_collection("pdf_data", embedding_function=ef)
    return client, collection

# Step 2: Extract Text from PDF
def extract_text_from_pdf(pdf_path):
    pdf_text = ""
    with fitz.open(pdf_path) as doc:
        for page in doc:
            pdf_text += page.get_text()
    return pdf_text

# Step 3: Add Extracted Text to Vector Database
def add_pdf_text_to_db(collection, pdf_text):
    sentences = pdf_text.split("\n")  # Split text into lines for granularity
    for idx, sentence in enumerate(sentences):
        if sentence.strip():  # Avoid empty lines
            collection.add(
                ids=[f"pdf_text_{idx}"],
                documents=[sentence],
                metadatas={"line_number": idx, "text": sentence}
            )

# Step 4: Query Function
def query_pdf_data(collection, query, retriever_model):
    results = collection.query(
        query_texts=[query],
        n_results=3
    )
    context = " ".join([doc for doc in results["documents"][0]])
    answer = retriever_model(f"Context: {context}\nQuestion: {query}")
    return answer, results["metadatas"]

# Streamlit Interface
def main():
    st.title("PDF Chatbot with Retrieval-Augmented Generation")
    st.write("Upload a PDF, and ask questions about its content!")

    # Initialize components
    client, collection = setup_chromadb()
    retriever_model = pipeline("text2text-generation", model="google/flan-t5-small")  # Free LLM

    # File upload
    uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
    if uploaded_file:
        st.write("Extracting text and populating the database...")
        pdf_text = extract_text_from_pdf(uploaded_file)
        add_pdf_text_to_db(collection, pdf_text)
        st.success("PDF text has been added to the database. You can now query it!")

        # Query Input
        query = st.text_input("Enter your query about the PDF:")
        if query:
            try:
                answer, metadata = query_pdf_data(collection, query, retriever_model)
                st.subheader("Answer:")
                st.write(answer[0]['generated_text'])
                st.subheader("Retrieved Context:")
                for meta in metadata[0]:
                    st.write(meta)
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    main()










# import tempfile
# import PyPDF2
# import streamlit as st
# from transformers import GPT2LMHeadModel, GPT2Tokenizer

# # Load pre-trained GPT-3 model and tokenizer
# tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
# model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")

        
# def extract_text_from_pdf(file_path):
#     text = ""
#     with open(file_path, "rb") as f:
#         reader = PyPDF2.PdfFileReader(f)
#         for page_num in range(reader.numPages):
#             text += reader.getPage(page_num).extractText()
#     return text

# def generate_response(user_input):
#     input_ids = tokenizer.encode(user_input, return_tensors="pt")
#     output = model.generate(input_ids, max_length=100, num_return_sequences=1, temperature=0.7)
#     response = tokenizer.decode(output[0], skip_special_tokens=True)
#     return response

# def main():
#     st.title("PDF Chatbot")

#     pdf_file = st.file_uploader("Upload an pdf file", type=["pdf"], accept_multiple_files=False)

#     if pdf_file is not None:
#         with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
#             tmp_file.write(pdf_file.read())
#             st.success("PDF file successfully uploaded and stored temporally.")
#         file_path = tmp_file.name
#         pdf_text = extract_text_from_pdf(file_path)
#         st.text_area("PDF Content", pdf_text)
#     else:
#         st.markdown('File not found!')        

#     user_input = st.text_input("You:", "")
#     if st.button("Send"):
#         response = generate_response(user_input)
#         st.text_area("Chatbot:", response)

# if __name__ == "__main__":
#     main()