import pandas as pd import streamlit as st import seaborn as sns from data_cleaning import preprocess from transformers import pipeline from data_integration import scrape_all_pages st.header('Amazon Sentiment Analysis using FineTuned :blue[GPT-2] Pre-Trained Model') sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") # Example usage:- sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' url = st.text_input("Amazon product link", sample_url) st.write("Done") all_reviews = scrape_all_pages(url) # Convert to DataFrame for further analysis reviews = pd.DataFrame(all_reviews) reviews['processed_text'] = reviews['content'].apply(preprocess) # st.dataframe(reviews, use_container_width=True) # st.markdown(sentiment_model(['It is Super!'])) sentiments = [] for text in reviews['processed_text']: if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': output = 'Positive' else: output = 'Negative' sentiments.append(output) reviews['sentiments'] = sentiments st.header(':rainbow[Output]') st.dataframe(reviews, use_container_width=True) # sns.countplot(reviews['sentiments'])