import streamlit as st import seaborn as sns # import data_cleaning from transformers import pipeline sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") st.markdown(sentiment_model(['It is Super!'])) # sentiments = [] # for text in df['clean_text']: # if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': # output = 'Positive' # else: # output = 'Negative' # sentiments.append(output) # df['sentiments'] = sentiments # sns.countplot(df['sentiments'])