Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
import seaborn as sns | |
from data_cleaning import preprocess | |
from transformers import pipeline | |
from data_integration import scrape_all_pages | |
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") | |
# Example usage:- | |
sample_url = 'https://www.amazon.in/s?k=laptop&i=computers&crid=1895I80OXDD8Y&sprefix=lap%2Ccomputers%2C533&ref=nb_sb_ss_ts-doa-p_1_3pe=all_reviews' | |
url = st.text_input("Amazon product link", sample_url) | |
st.write("The current movie title is", url) | |
all_reviews = scrape_all_pages(url) | |
# Convert to DataFrame for further analysis | |
reviews = pd.DataFrame(all_reviews) | |
reviews['processed_text'] = reviews['content'].apply(preprocess) | |
# st.markdown(sentiment_model(['It is Super!'])) | |
sentiments = [] | |
for text in reviews['processed_text']: | |
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': | |
output = 'Positive' | |
else: | |
output = 'Negative' | |
sentiments.append(output) | |
df['sentiments'] = sentiments | |
sns.countplot(reviews['sentiments']) | |