|
import pybase64 as base64 |
|
import pandas as pd |
|
import streamlit as st |
|
import seaborn as sns |
|
from data_cleaning import preprocess |
|
from transformers import pipeline |
|
from data_integration import scrape_all_pages |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
page_bg_img = """ |
|
<style> |
|
.stApp > header { |
|
background-color: transparent; |
|
} |
|
|
|
.stApp { |
|
|
|
background: rgb(80,255,235); |
|
background: linear-gradient(90deg, rgba(80,255,235,1) 0%, rgba(0,0,255,1) 50%, rgba(188,0,255,1) 92%); |
|
background-size: 150% 150%; |
|
animation: my_animation 10s ease infinite; |
|
} |
|
|
|
@keyframes my_animation { |
|
0% { |
|
background-position: 0% 0%; |
|
} |
|
25% { |
|
background-position: 100% 0%; |
|
} |
|
50% { |
|
background-position: 100% 100%; |
|
} |
|
75% { |
|
background-position: 100% 100%; |
|
} |
|
100% { |
|
background-position: 100% 0%; |
|
} |
|
} |
|
|
|
</style> |
|
""" |
|
|
|
|
|
|
|
|
|
st.markdown(page_bg_img, unsafe_allow_html=True) |
|
|
|
|
|
st.image("logo.png", width=80) |
|
st.subheader(':violet[NLP HUB®]') |
|
st.markdown("") |
|
st.markdown("") |
|
st.markdown("") |
|
st.markdown("") |
|
|
|
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model') |
|
|
|
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") |
|
|
|
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' |
|
url = st.text_input("Amazon product link", sample_url) |
|
st.button("Re-run") |
|
st.write("Done") |
|
st.subheader('', divider='rainbow') |
|
|
|
try: |
|
all_reviews = scrape_all_pages(url) |
|
|
|
reviews = pd.DataFrame(all_reviews) |
|
reviews['processed_text'] = reviews['content'].apply(preprocess) |
|
|
|
|
|
|
|
|
|
sentiments = [] |
|
for text in reviews['processed_text']: |
|
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': |
|
output = 'Positive' |
|
else: |
|
output = 'Negative' |
|
sentiments.append(output) |
|
|
|
reviews['sentiments'] = sentiments |
|
st.markdown(':white[Output]') |
|
st.dataframe(reviews, use_container_width=True) |
|
|
|
except KeyError: |
|
st.markdown('Please :red[Re-run] the app') |
|
|