ashok2216's picture
Update app.py
7713456 verified
raw
history blame
4.56 kB
import pybase64 as base64
import pandas as pd
import streamlit as st
import seaborn as sns
from data_cleaning import preprocess
from transformers import pipeline
from data_integration import scrape_all_pages
#@st.cache_data
#def get_img_as_base64(file):
# with open(file, "rb") as f:
# data = f.read()
# return base64.b64encode(data).decode()
#img = get_img_as_base64("image.jpg")background-image: url("data:image/png;base64,{img}");
page_bg_img = f"""
<style>
[data-testid="stAppViewContainer"] > .main {{
background-image: url("");
background-size: 100%;
background-position: top left;
background-repeat: no-repeat;
background-attachment: local;
}}
[data-testid="stSidebar"] > div:first-child {{
background-position: center;
background-repeat: no-repeat;
background-attachment: fixed;
}}
[data-testid="stHeader"] {{
background: rgba(0,0,0,0);
}}
[data-testid="stToolbar"] {{
right: 2rem;
}}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
# st.image("logo.png", width=200, height=200)
st.image("logo.png", width=100)
st.subheader(':blue[NLP HUB®]')
st.header('Amazon Sentiment Analysis using FineTuned :green[GPT-2] Pre-Trained Model')
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
# Example usage:-
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
url = st.text_input("Amazon product link", sample_url)
st.write("Done")
st.subheader('', divider='rainbow')
all_reviews = scrape_all_pages(url)
# Convert to DataFrame for further analysis
reviews = pd.DataFrame(all_reviews)
reviews['processed_text'] = reviews['content'].apply(preprocess)
# st.dataframe(reviews, use_container_width=True)
# st.markdown(sentiment_model(['It is Super!']))
sentiments = []
for text in reviews['processed_text']:
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
output = 'Positive'
else:
output = 'Negative'
sentiments.append(output)
reviews['sentiments'] = sentiments
st.markdown(':rainbow[Output]')
st.dataframe(reviews, use_container_width=True)
# sns.countplot(reviews['sentiments'])