Spaces:
Sleeping
Sleeping
import pybase64 as base64 | |
import pandas as pd | |
import streamlit as st | |
import seaborn as sns | |
from data_cleaning import preprocess | |
from transformers import pipeline | |
from data_integration import scrape_all_pages | |
#@st.cache_data | |
#def get_img_as_base64(file): | |
# with open(file, "rb") as f: | |
# data = f.read() | |
# return base64.b64encode(data).decode() | |
#img = get_img_as_base64("image.jpg")background-image: url("data:image/png;base64,{img}"); | |
page_bg_img = f""" | |
<style> | |
html, body { | |
font-family: 'Dongle', sans-serif; | |
margin: 0; | |
padding: 0; | |
} | |
.text-container { | |
z-index: 100; | |
width: 100vw; | |
height: 100vh; | |
display: flex; | |
position: absolute; | |
top: 0; | |
left: 0; | |
justify-content: center; | |
align-items: center; | |
font-size: 96px; | |
color: white; | |
opacity: 0.8; | |
user-select: none; | |
text-shadow: 1px 1px rgba(0,0,0,0.1); | |
} | |
:root { | |
--color-bg1: rgb(108, 0, 162); | |
--color-bg2: rgb(0, 17, 82); | |
--color1: 18, 113, 255; | |
--color2: 221, 74, 255; | |
--color3: 100, 220, 255; | |
--color4: 200, 50, 50; | |
--color5: 180, 180, 50; | |
--color-interactive: 140, 100, 255; | |
--circle-size: 80%; | |
--blending: hard-light; | |
} | |
@keyframes moveInCircle { | |
0% { | |
transform: rotate(0deg); | |
} | |
50% { | |
transform: rotate(180deg); | |
} | |
100% { | |
transform: rotate(360deg); | |
} | |
} | |
@keyframes moveVertical { | |
0% { | |
transform: translateY(-50%); | |
} | |
50% { | |
transform: translateY(50%); | |
} | |
100% { | |
transform: translateY(-50%); | |
} | |
} | |
@keyframes moveHorizontal { | |
0% { | |
transform: translateX(-50%) translateY(-10%); | |
} | |
50% { | |
transform: translateX(50%) translateY(10%); | |
} | |
100% { | |
transform: translateX(-50%) translateY(-10%); | |
} | |
} | |
.gradient-bg { | |
width: 100vw; | |
height: 100vh; | |
position: relative; | |
overflow: hidden; | |
background: linear-gradient(40deg, var(--color-bg1), var(--color-bg2)); | |
top: 0; | |
left: 0; | |
svg { | |
display: none; | |
} | |
.gradients-container { | |
filter: url(#goo) blur(40px) ; | |
width: 100%; | |
height: 100%; | |
} | |
.g1 { | |
position: absolute; | |
background: radial-gradient(circle at center, rgba(var(--color1), 0.8) 0, rgba(var(--color1), 0) 50%) no-repeat; | |
mix-blend-mode: var(--blending); | |
width: var(--circle-size); | |
height: var(--circle-size); | |
top: calc(50% - var(--circle-size) / 2); | |
left: calc(50% - var(--circle-size) / 2); | |
transform-origin: center center; | |
animation: moveVertical 30s ease infinite; | |
opacity: 1; | |
} | |
.g2 { | |
position: absolute; | |
background: radial-gradient(circle at center, rgba(var(--color2), 0.8) 0, rgba(var(--color2), 0) 50%) no-repeat; | |
mix-blend-mode: var(--blending); | |
width: var(--circle-size); | |
height: var(--circle-size); | |
top: calc(50% - var(--circle-size) / 2); | |
left: calc(50% - var(--circle-size) / 2); | |
transform-origin: calc(50% - 400px); | |
animation: moveInCircle 20s reverse infinite; | |
opacity: 1; | |
} | |
.g3 { | |
position: absolute; | |
background: radial-gradient(circle at center, rgba(var(--color3), 0.8) 0, rgba(var(--color3), 0) 50%) no-repeat; | |
mix-blend-mode: var(--blending); | |
width: var(--circle-size); | |
height: var(--circle-size); | |
top: calc(50% - var(--circle-size) / 2 + 200px); | |
left: calc(50% - var(--circle-size) / 2 - 500px); | |
transform-origin: calc(50% + 400px); | |
animation: moveInCircle 40s linear infinite; | |
opacity: 1; | |
} | |
.g4 { | |
position: absolute; | |
background: radial-gradient(circle at center, rgba(var(--color4), 0.8) 0, rgba(var(--color4), 0) 50%) no-repeat; | |
mix-blend-mode: var(--blending); | |
width: var(--circle-size); | |
height: var(--circle-size); | |
top: calc(50% - var(--circle-size) / 2); | |
left: calc(50% - var(--circle-size) / 2); | |
transform-origin: calc(50% - 200px); | |
animation: moveHorizontal 40s ease infinite; | |
opacity: 0.7; | |
} | |
.g5 { | |
position: absolute; | |
background: radial-gradient(circle at center, rgba(var(--color5), 0.8) 0, rgba(var(--color5), 0) 50%) no-repeat; | |
mix-blend-mode: var(--blending); | |
width: calc(var(--circle-size) * 2); | |
height: calc(var(--circle-size) * 2); | |
top: calc(50% - var(--circle-size)); | |
left: calc(50% - var(--circle-size)); | |
transform-origin: calc(50% - 800px) calc(50% + 200px); | |
animation: moveInCircle 20s ease infinite; | |
opacity: 1; | |
} | |
.interactive { | |
position: absolute; | |
background: radial-gradient(circle at center, rgba(var(--color-interactive), 0.8) 0, rgba(var(--color-interactive), 0) 50%) no-repeat; | |
mix-blend-mode: var(--blending); | |
width: 100%; | |
height: 100%; | |
top: -50%; | |
left: -50%; | |
opacity: 0.7; | |
} | |
} | |
</style> | |
""" | |
st.markdown(page_bg_img, unsafe_allow_html=True) | |
# st.image("logo.png", width=200, height=200) | |
st.image("logo.png", width=80) | |
st.subheader(':violet[NLP HUB®]') | |
st.markdown("") | |
st.markdown("") | |
st.markdown("") | |
st.markdown("") | |
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model') | |
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") | |
# Example usage:- | |
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' | |
url = st.text_input("Amazon product link", sample_url) | |
st.button("Re-run") | |
st.write("Done") | |
st.subheader('', divider='rainbow') | |
try: | |
all_reviews = scrape_all_pages(url) | |
# Convert to DataFrame for further analysis | |
reviews = pd.DataFrame(all_reviews) | |
reviews['processed_text'] = reviews['content'].apply(preprocess) | |
# st.dataframe(reviews, use_container_width=True) | |
# st.markdown(sentiment_model(['It is Super!'])) | |
sentiments = [] | |
for text in reviews['processed_text']: | |
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': | |
output = 'Positive' | |
else: | |
output = 'Negative' | |
sentiments.append(output) | |
reviews['sentiments'] = sentiments | |
st.markdown(':white[Output]') | |
st.dataframe(reviews, use_container_width=True) | |
# sns.countplot(reviews['sentiments']) | |
except KeyError: | |
st.markdown('Please :red[Re-run] the app') | |