Spaces:
Sleeping
Sleeping
| import pybase64 as base64 | |
| import pandas as pd | |
| import streamlit as st | |
| import seaborn as sns | |
| from data_cleaning import preprocess | |
| from transformers import pipeline | |
| from data_integration import scrape_all_pages | |
| #@st.cache_data | |
| #def get_img_as_base64(file): | |
| # with open(file, "rb") as f: | |
| # data = f.read() | |
| # return base64.b64encode(data).decode() | |
| #img = get_img_as_base64("image.jpg")background-image: url("data:image/png;base64,{img}"); | |
| page_bg_img = f""" | |
| <style> | |
| html, body { | |
| font-family: 'Dongle', sans-serif; | |
| margin: 0; | |
| padding: 0; | |
| } | |
| .text-container { | |
| z-index: 100; | |
| width: 100vw; | |
| height: 100vh; | |
| display: flex; | |
| position: absolute; | |
| top: 0; | |
| left: 0; | |
| justify-content: center; | |
| align-items: center; | |
| font-size: 96px; | |
| color: white; | |
| opacity: 0.8; | |
| user-select: none; | |
| text-shadow: 1px 1px rgba(0,0,0,0.1); | |
| } | |
| :root { | |
| --color-bg1: rgb(108, 0, 162); | |
| --color-bg2: rgb(0, 17, 82); | |
| --color1: 18, 113, 255; | |
| --color2: 221, 74, 255; | |
| --color3: 100, 220, 255; | |
| --color4: 200, 50, 50; | |
| --color5: 180, 180, 50; | |
| --color-interactive: 140, 100, 255; | |
| --circle-size: 80%; | |
| --blending: hard-light; | |
| } | |
| @keyframes moveInCircle { | |
| 0% { | |
| transform: rotate(0deg); | |
| } | |
| 50% { | |
| transform: rotate(180deg); | |
| } | |
| 100% { | |
| transform: rotate(360deg); | |
| } | |
| } | |
| @keyframes moveVertical { | |
| 0% { | |
| transform: translateY(-50%); | |
| } | |
| 50% { | |
| transform: translateY(50%); | |
| } | |
| 100% { | |
| transform: translateY(-50%); | |
| } | |
| } | |
| @keyframes moveHorizontal { | |
| 0% { | |
| transform: translateX(-50%) translateY(-10%); | |
| } | |
| 50% { | |
| transform: translateX(50%) translateY(10%); | |
| } | |
| 100% { | |
| transform: translateX(-50%) translateY(-10%); | |
| } | |
| } | |
| .gradient-bg { | |
| width: 100vw; | |
| height: 100vh; | |
| position: relative; | |
| overflow: hidden; | |
| background: linear-gradient(40deg, var(--color-bg1), var(--color-bg2)); | |
| top: 0; | |
| left: 0; | |
| svg { | |
| display: none; | |
| } | |
| .gradients-container { | |
| filter: url(#goo) blur(40px) ; | |
| width: 100%; | |
| height: 100%; | |
| } | |
| .g1 { | |
| position: absolute; | |
| background: radial-gradient(circle at center, rgba(var(--color1), 0.8) 0, rgba(var(--color1), 0) 50%) no-repeat; | |
| mix-blend-mode: var(--blending); | |
| width: var(--circle-size); | |
| height: var(--circle-size); | |
| top: calc(50% - var(--circle-size) / 2); | |
| left: calc(50% - var(--circle-size) / 2); | |
| transform-origin: center center; | |
| animation: moveVertical 30s ease infinite; | |
| opacity: 1; | |
| } | |
| .g2 { | |
| position: absolute; | |
| background: radial-gradient(circle at center, rgba(var(--color2), 0.8) 0, rgba(var(--color2), 0) 50%) no-repeat; | |
| mix-blend-mode: var(--blending); | |
| width: var(--circle-size); | |
| height: var(--circle-size); | |
| top: calc(50% - var(--circle-size) / 2); | |
| left: calc(50% - var(--circle-size) / 2); | |
| transform-origin: calc(50% - 400px); | |
| animation: moveInCircle 20s reverse infinite; | |
| opacity: 1; | |
| } | |
| .g3 { | |
| position: absolute; | |
| background: radial-gradient(circle at center, rgba(var(--color3), 0.8) 0, rgba(var(--color3), 0) 50%) no-repeat; | |
| mix-blend-mode: var(--blending); | |
| width: var(--circle-size); | |
| height: var(--circle-size); | |
| top: calc(50% - var(--circle-size) / 2 + 200px); | |
| left: calc(50% - var(--circle-size) / 2 - 500px); | |
| transform-origin: calc(50% + 400px); | |
| animation: moveInCircle 40s linear infinite; | |
| opacity: 1; | |
| } | |
| .g4 { | |
| position: absolute; | |
| background: radial-gradient(circle at center, rgba(var(--color4), 0.8) 0, rgba(var(--color4), 0) 50%) no-repeat; | |
| mix-blend-mode: var(--blending); | |
| width: var(--circle-size); | |
| height: var(--circle-size); | |
| top: calc(50% - var(--circle-size) / 2); | |
| left: calc(50% - var(--circle-size) / 2); | |
| transform-origin: calc(50% - 200px); | |
| animation: moveHorizontal 40s ease infinite; | |
| opacity: 0.7; | |
| } | |
| .g5 { | |
| position: absolute; | |
| background: radial-gradient(circle at center, rgba(var(--color5), 0.8) 0, rgba(var(--color5), 0) 50%) no-repeat; | |
| mix-blend-mode: var(--blending); | |
| width: calc(var(--circle-size) * 2); | |
| height: calc(var(--circle-size) * 2); | |
| top: calc(50% - var(--circle-size)); | |
| left: calc(50% - var(--circle-size)); | |
| transform-origin: calc(50% - 800px) calc(50% + 200px); | |
| animation: moveInCircle 20s ease infinite; | |
| opacity: 1; | |
| } | |
| .interactive { | |
| position: absolute; | |
| background: radial-gradient(circle at center, rgba(var(--color-interactive), 0.8) 0, rgba(var(--color-interactive), 0) 50%) no-repeat; | |
| mix-blend-mode: var(--blending); | |
| width: 100%; | |
| height: 100%; | |
| top: -50%; | |
| left: -50%; | |
| opacity: 0.7; | |
| } | |
| } | |
| </style> | |
| """ | |
| st.markdown(page_bg_img, unsafe_allow_html=True) | |
| # st.image("logo.png", width=200, height=200) | |
| st.image("logo.png", width=80) | |
| st.subheader(':violet[NLP HUB®]') | |
| st.markdown("") | |
| st.markdown("") | |
| st.markdown("") | |
| st.markdown("") | |
| st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model') | |
| sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") | |
| # Example usage:- | |
| sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' | |
| url = st.text_input("Amazon product link", sample_url) | |
| st.button("Re-run") | |
| st.write("Done") | |
| st.subheader('', divider='rainbow') | |
| try: | |
| all_reviews = scrape_all_pages(url) | |
| # Convert to DataFrame for further analysis | |
| reviews = pd.DataFrame(all_reviews) | |
| reviews['processed_text'] = reviews['content'].apply(preprocess) | |
| # st.dataframe(reviews, use_container_width=True) | |
| # st.markdown(sentiment_model(['It is Super!'])) | |
| sentiments = [] | |
| for text in reviews['processed_text']: | |
| if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': | |
| output = 'Positive' | |
| else: | |
| output = 'Negative' | |
| sentiments.append(output) | |
| reviews['sentiments'] = sentiments | |
| st.markdown(':white[Output]') | |
| st.dataframe(reviews, use_container_width=True) | |
| # sns.countplot(reviews['sentiments']) | |
| except KeyError: | |
| st.markdown('Please :red[Re-run] the app') | |