ashok2216's picture
Update app.py
49d79f3 verified
raw
history blame
6.14 kB
import pybase64 as base64
import pandas as pd
import streamlit as st
import seaborn as sns
from data_cleaning import preprocess
from transformers import pipeline
from data_integration import scrape_all_pages
#@st.cache_data
#def get_img_as_base64(file):
# with open(file, "rb") as f:
# data = f.read()
# return base64.b64encode(data).decode()
#img = get_img_as_base64("image.jpg")background-image: url("data:image/png;base64,{img}");
page_bg_img = f"""
<style>
html, body {
font-family: 'Dongle', sans-serif;
margin: 0;
padding: 0;
}
.text-container {
z-index: 100;
width: 100vw;
height: 100vh;
display: flex;
position: absolute;
top: 0;
left: 0;
justify-content: center;
align-items: center;
font-size: 96px;
color: white;
opacity: 0.8;
user-select: none;
text-shadow: 1px 1px rgba(0,0,0,0.1);
}
:root {
--color-bg1: rgb(108, 0, 162);
--color-bg2: rgb(0, 17, 82);
--color1: 18, 113, 255;
--color2: 221, 74, 255;
--color3: 100, 220, 255;
--color4: 200, 50, 50;
--color5: 180, 180, 50;
--color-interactive: 140, 100, 255;
--circle-size: 80%;
--blending: hard-light;
}
@keyframes moveInCircle {
0% {
transform: rotate(0deg);
}
50% {
transform: rotate(180deg);
}
100% {
transform: rotate(360deg);
}
}
@keyframes moveVertical {
0% {
transform: translateY(-50%);
}
50% {
transform: translateY(50%);
}
100% {
transform: translateY(-50%);
}
}
@keyframes moveHorizontal {
0% {
transform: translateX(-50%) translateY(-10%);
}
50% {
transform: translateX(50%) translateY(10%);
}
100% {
transform: translateX(-50%) translateY(-10%);
}
}
.gradient-bg {
width: 100vw;
height: 100vh;
position: relative;
overflow: hidden;
background: linear-gradient(40deg, var(--color-bg1), var(--color-bg2));
top: 0;
left: 0;
svg {
display: none;
}
.gradients-container {
filter: url(#goo) blur(40px) ;
width: 100%;
height: 100%;
}
.g1 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color1), 0.8) 0, rgba(var(--color1), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2);
left: calc(50% - var(--circle-size) / 2);
transform-origin: center center;
animation: moveVertical 30s ease infinite;
opacity: 1;
}
.g2 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color2), 0.8) 0, rgba(var(--color2), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2);
left: calc(50% - var(--circle-size) / 2);
transform-origin: calc(50% - 400px);
animation: moveInCircle 20s reverse infinite;
opacity: 1;
}
.g3 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color3), 0.8) 0, rgba(var(--color3), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2 + 200px);
left: calc(50% - var(--circle-size) / 2 - 500px);
transform-origin: calc(50% + 400px);
animation: moveInCircle 40s linear infinite;
opacity: 1;
}
.g4 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color4), 0.8) 0, rgba(var(--color4), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: var(--circle-size);
height: var(--circle-size);
top: calc(50% - var(--circle-size) / 2);
left: calc(50% - var(--circle-size) / 2);
transform-origin: calc(50% - 200px);
animation: moveHorizontal 40s ease infinite;
opacity: 0.7;
}
.g5 {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color5), 0.8) 0, rgba(var(--color5), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: calc(var(--circle-size) * 2);
height: calc(var(--circle-size) * 2);
top: calc(50% - var(--circle-size));
left: calc(50% - var(--circle-size));
transform-origin: calc(50% - 800px) calc(50% + 200px);
animation: moveInCircle 20s ease infinite;
opacity: 1;
}
.interactive {
position: absolute;
background: radial-gradient(circle at center, rgba(var(--color-interactive), 0.8) 0, rgba(var(--color-interactive), 0) 50%) no-repeat;
mix-blend-mode: var(--blending);
width: 100%;
height: 100%;
top: -50%;
left: -50%;
opacity: 0.7;
}
}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
# st.image("logo.png", width=200, height=200)
st.image("logo.png", width=80)
st.subheader(':violet[NLP HUB®]')
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model')
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
# Example usage:-
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
url = st.text_input("Amazon product link", sample_url)
st.button("Re-run")
st.write("Done")
st.subheader('', divider='rainbow')
try:
all_reviews = scrape_all_pages(url)
# Convert to DataFrame for further analysis
reviews = pd.DataFrame(all_reviews)
reviews['processed_text'] = reviews['content'].apply(preprocess)
# st.dataframe(reviews, use_container_width=True)
# st.markdown(sentiment_model(['It is Super!']))
sentiments = []
for text in reviews['processed_text']:
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
output = 'Positive'
else:
output = 'Negative'
sentiments.append(output)
reviews['sentiments'] = sentiments
st.markdown(':white[Output]')
st.dataframe(reviews, use_container_width=True)
# sns.countplot(reviews['sentiments'])
except KeyError:
st.markdown('Please :red[Re-run] the app')