ashok2216's picture
Update app.py
3f81b6c verified
raw
history blame
519 Bytes
import streamlit as st
import seaborn as sns
# import data_cleaning
from transformers import pipeline
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
st.markdown(sentiment_model(['It is Super!']))
# sentiments = []
# for text in df['clean_text']:
# if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
# output = 'Positive'
# else:
# output = 'Negative'
# sentiments.append(output)
# df['sentiments'] = sentiments
# sns.countplot(df['sentiments'])