|
import streamlit as st |
|
import seaborn as sns |
|
from data_cleaning import preprocess |
|
from transformers import pipeline |
|
from data_integration import scrape_all_pages |
|
|
|
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") |
|
|
|
|
|
sample_url = 'https://www.amazon.in/OnePlus-Nord-Pastel-128GB-Storage/product-reviews/B0BY8JZ22K/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' |
|
url = st.text_input("Amazon product link", sample_url) |
|
st.write("The current movie title is", url) |
|
|
|
all_reviews = scrape_all_pages(url) |
|
|
|
reviews = pd.DataFrame(all_reviews) |
|
processed_text = reviews[content] |
|
|
|
|
|
|
|
sentiments = [] |
|
for text in processed_text: |
|
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': |
|
output = 'Positive' |
|
else: |
|
output = 'Negative' |
|
sentiments.append(output) |
|
|
|
df['sentiments'] = sentiments |
|
sns.countplot(df['sentiments']) |
|
|