|
import pybase64 as base64 |
|
import pandas as pd |
|
import streamlit as st |
|
import seaborn as sns |
|
from data_cleaning import preprocess |
|
from transformers import pipeline |
|
from data_integration import scrape_all_pages |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
page_bg_img = f""" |
|
<style> |
|
[data-testid="stAppViewContainer"] > .main {{ |
|
background-image: url("https://i.pinimg.com/originals/6f/6c/15/6f6c1538b050072b002dbc06bedaaf90.jpg"); |
|
background-size: cover; |
|
background-position: center; |
|
background-repeat: no-repeat; |
|
}} |
|
|
|
[data-testid="stSidebar"] > div:first-child {{ |
|
background-position: center; |
|
background-repeat: no-repeat; |
|
background-attachment: fixed; |
|
}} |
|
|
|
[data-testid="stHeader"] {{ |
|
background: rgba(0,0,0,0); |
|
}} |
|
|
|
[data-testid="stToolbar"] {{ |
|
right: 2rem; |
|
}} |
|
</style> |
|
""" |
|
st.markdown(page_bg_img, unsafe_allow_html=True) |
|
|
|
st.image("logo.png", width=80) |
|
st.subheader(':violet[NLP HUB®]') |
|
st.markdown("") |
|
st.markdown("") |
|
st.markdown("") |
|
st.markdown("") |
|
|
|
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model') |
|
|
|
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") |
|
|
|
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' |
|
url = st.text_input("Amazon product link", sample_url) |
|
st.button("Re-run") |
|
st.write("Done") |
|
st.subheader('', divider='rainbow') |
|
|
|
try: |
|
all_reviews = scrape_all_pages(url) |
|
|
|
reviews = pd.DataFrame(all_reviews) |
|
reviews['processed_text'] = reviews['content'].apply(preprocess) |
|
|
|
|
|
|
|
|
|
sentiments = [] |
|
for text in reviews['processed_text']: |
|
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': |
|
output = 'Positive' |
|
else: |
|
output = 'Negative' |
|
sentiments.append(output) |
|
|
|
reviews['sentiments'] = sentiments |
|
st.markdown(':white[Output]') |
|
st.dataframe(reviews, use_container_width=True) |
|
|
|
except KeyError: |
|
st.markdown('Please :red[Re-run] the app') |
|
|