|
import pandas as pd |
|
import streamlit as st |
|
import seaborn as sns |
|
from data_cleaning import preprocess |
|
from transformers import pipeline |
|
from data_integration import scrape_all_pages |
|
|
|
|
|
st.image("logo.png", width=150) |
|
st.subheader(':blue[NLP HUB®]') |
|
st.header('Amazon Sentiment Analysis using FineTuned :green[GPT-2] Pre-Trained Model') |
|
|
|
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier") |
|
|
|
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews' |
|
url = st.text_input("Amazon product link", sample_url) |
|
st.write("Done") |
|
|
|
all_reviews = scrape_all_pages(url) |
|
|
|
reviews = pd.DataFrame(all_reviews) |
|
reviews['processed_text'] = reviews['content'].apply(preprocess) |
|
|
|
|
|
|
|
|
|
sentiments = [] |
|
for text in reviews['processed_text']: |
|
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1': |
|
output = 'Positive' |
|
else: |
|
output = 'Negative' |
|
sentiments.append(output) |
|
|
|
reviews['sentiments'] = sentiments |
|
st.header(':rainbow[Output]') |
|
st.dataframe(reviews, use_container_width=True) |
|
|
|
|