ashok2216 commited on
Commit
73b9426
·
verified ·
1 Parent(s): 90c9da0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -16,26 +16,25 @@ import os
16
  import requests
17
  import json
18
  import pandas as pd
 
19
  import geopandas as gpd
20
  import tzlocal
21
- import pytz
22
  from PIL import Image
23
- import contextily as ctx
24
  from datetime import datetime
 
25
  from geopy.exc import GeocoderTimedOut
26
  from geopy.geocoders import Nominatim
 
 
27
  import folium
28
  from folium import plugins
29
  import streamlit as st
30
  import streamlit_folium as st_folium
31
  from data import flight_data
32
- from huggingface_hub import InferenceClient
33
  import branca.colormap as cm
34
- from sentence_transformers import SentenceTransformer
35
- from sklearn.metrics.pairwise import cosine_similarity
36
- from difflib import get_close_matches
37
- import warnings
38
- warnings.filterwarnings('ignore')
39
  import time
40
 
41
  # Cache the airport data to avoid reloading it every time
@@ -126,6 +125,7 @@ def query_llm(prompt):
126
  def create_flight_embeddings(geo_df):
127
  """Create embeddings for flight data to enable semantic search"""
128
  try:
 
129
  model = SentenceTransformer('all-MiniLM-L6-v2')
130
 
131
  # Create text representations of flight data
@@ -146,12 +146,14 @@ def create_flight_embeddings(geo_df):
146
  def find_similar_flights(identifier, geo_df, embeddings, flight_texts, threshold=0.7):
147
  """Find similar flights using semantic search"""
148
  try:
 
149
  model = SentenceTransformer('all-MiniLM-L6-v2')
150
 
151
  # Create query embedding
152
  query_embedding = model.encode([identifier])
153
 
154
  # Calculate similarities
 
155
  similarities = cosine_similarity(query_embedding, embeddings)[0]
156
 
157
  # Find similar flights
@@ -219,6 +221,7 @@ def query_flight_data(geo_df, question):
219
  # If still no match, try fuzzy matching
220
  if flight_data is None or flight_data.empty:
221
  try:
 
222
  all_callsigns = geo_df['callsign'].fillna('').str.upper().unique()
223
  close_matches = get_close_matches(identifier, all_callsigns, n=1, cutoff=0.8)
224
  if close_matches:
 
16
  import requests
17
  import json
18
  import pandas as pd
19
+ import requests
20
  import geopandas as gpd
21
  import tzlocal
22
+ import pytz
23
  from PIL import Image
 
24
  from datetime import datetime
25
+ import matplotlib.pyplot as plt
26
  from geopy.exc import GeocoderTimedOut
27
  from geopy.geocoders import Nominatim
28
+ import warnings
29
+ warnings.filterwarnings('ignore')
30
  import folium
31
  from folium import plugins
32
  import streamlit as st
33
  import streamlit_folium as st_folium
34
  from data import flight_data
35
+ from huggingface_hub import InferenceApi, login, InferenceClient
36
  import branca.colormap as cm
37
+ from functools import lru_cache
 
 
 
 
38
  import time
39
 
40
  # Cache the airport data to avoid reloading it every time
 
125
  def create_flight_embeddings(geo_df):
126
  """Create embeddings for flight data to enable semantic search"""
127
  try:
128
+ from sentence_transformers import SentenceTransformer
129
  model = SentenceTransformer('all-MiniLM-L6-v2')
130
 
131
  # Create text representations of flight data
 
146
  def find_similar_flights(identifier, geo_df, embeddings, flight_texts, threshold=0.7):
147
  """Find similar flights using semantic search"""
148
  try:
149
+ from sentence_transformers import SentenceTransformer
150
  model = SentenceTransformer('all-MiniLM-L6-v2')
151
 
152
  # Create query embedding
153
  query_embedding = model.encode([identifier])
154
 
155
  # Calculate similarities
156
+ from sklearn.metrics.pairwise import cosine_similarity
157
  similarities = cosine_similarity(query_embedding, embeddings)[0]
158
 
159
  # Find similar flights
 
221
  # If still no match, try fuzzy matching
222
  if flight_data is None or flight_data.empty:
223
  try:
224
+ from difflib import get_close_matches
225
  all_callsigns = geo_df['callsign'].fillna('').str.upper().unique()
226
  close_matches = get_close_matches(identifier, all_callsigns, n=1, cutoff=0.8)
227
  if close_matches: