Update app.py
Browse files
app.py
CHANGED
@@ -1,292 +1,3 @@
|
|
1 |
-
# '''Copyright 2024 Ashok Kumar
|
2 |
-
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.'''
|
14 |
-
|
15 |
-
# import os
|
16 |
-
# import requests
|
17 |
-
# import json
|
18 |
-
# import pandas as pd
|
19 |
-
# import numpy as np
|
20 |
-
# import requests
|
21 |
-
# import geopandas as gpd
|
22 |
-
# import contextily as ctx
|
23 |
-
# import tzlocal
|
24 |
-
# import pytz
|
25 |
-
# from PIL import Image
|
26 |
-
# from datetime import datetime
|
27 |
-
# import matplotlib.pyplot as plt
|
28 |
-
# from geopy.exc import GeocoderTimedOut
|
29 |
-
# from geopy.geocoders import Nominatim
|
30 |
-
# import warnings
|
31 |
-
# warnings.filterwarnings('ignore')
|
32 |
-
# from plotly.graph_objs import Marker
|
33 |
-
# import plotly.express as px
|
34 |
-
# import streamlit as st
|
35 |
-
# from data import flight_data
|
36 |
-
# from huggingface_hub import InferenceApi, login, InferenceClient
|
37 |
-
|
38 |
-
|
39 |
-
# hf_token = os.getenv("HF_TOKEN")
|
40 |
-
# if hf_token is None:
|
41 |
-
# raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
42 |
-
# login(hf_token)
|
43 |
-
|
44 |
-
|
45 |
-
# API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
|
46 |
-
# headers = {"Authorization": f"Bearer {hf_token}"}
|
47 |
-
|
48 |
-
# def query(payload):
|
49 |
-
# response = requests.post(API_URL, headers=headers, json=payload)
|
50 |
-
# return response.json()
|
51 |
-
|
52 |
-
# def query_flight_data(geo_df, question):
|
53 |
-
|
54 |
-
|
55 |
-
# table_data = {
|
56 |
-
# "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
|
57 |
-
# "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
|
58 |
-
# "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
|
59 |
-
# "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
60 |
-
# "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
61 |
-
# "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
62 |
-
# "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
63 |
-
# "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
64 |
-
# "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical
|
65 |
-
# "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
66 |
-
# "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
67 |
-
# "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
68 |
-
# "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
|
69 |
-
# "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
70 |
-
# "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
|
71 |
-
# "spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
|
72 |
-
# "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
|
73 |
-
# "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
74 |
-
# "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
|
75 |
-
# }
|
76 |
-
|
77 |
-
|
78 |
-
# # Construct the payload
|
79 |
-
# payload = {
|
80 |
-
# "inputs": {
|
81 |
-
# "query": question,
|
82 |
-
# "table": table_data,
|
83 |
-
# }
|
84 |
-
# }
|
85 |
-
|
86 |
-
# # Get the model response
|
87 |
-
# response = query(payload)
|
88 |
-
|
89 |
-
# # Check if 'answer' is in response and return it as a sentence
|
90 |
-
# if 'answer' in response:
|
91 |
-
# answer = response['answer']
|
92 |
-
# return f"The answer to your question '{question}': :orange[{answer}]"
|
93 |
-
# else:
|
94 |
-
# return "The model could not find an answer to your question."
|
95 |
-
|
96 |
-
|
97 |
-
# def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
|
98 |
-
# geolocator = Nominatim(user_agent="flight_tracker")
|
99 |
-
# loc = geolocator.geocode(country)
|
100 |
-
# loc_box = loc[1]
|
101 |
-
# extend_left =+12*flight_view_level
|
102 |
-
# extend_right =+10*flight_view_level
|
103 |
-
# extend_top =+10*flight_view_level
|
104 |
-
# extend_bottom =+ 18*flight_view_level
|
105 |
-
# lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
|
106 |
-
# lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
|
107 |
-
|
108 |
-
# tile_zoom = 8 # zoom of the map loaded by contextily
|
109 |
-
# figsize = (15, 15)
|
110 |
-
# columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
|
111 |
-
# "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
|
112 |
-
# "squawk","spi","position_source",]
|
113 |
-
# data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
|
114 |
-
# column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
|
115 |
-
# "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
|
116 |
-
# airport_df = pd.read_csv(data_url, header=None, names=column_names)
|
117 |
-
# airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
|
118 |
-
# airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
|
119 |
-
# airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
|
120 |
-
# (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
|
121 |
-
# (airport_country_loc['Longitude'] <= lon_max)]
|
122 |
-
# def get_traffic_gdf():
|
123 |
-
# url_data = (
|
124 |
-
# f"https://@opensky-network.org/api/states/all?"
|
125 |
-
# f"lamin={str(lat_min)}"
|
126 |
-
# f"&lomin={str(lon_min)}"
|
127 |
-
# f"&lamax={str(lat_max)}"
|
128 |
-
# f"&lomax={str(lon_max)}")
|
129 |
-
# json_dict = requests.get(url_data).json()
|
130 |
-
|
131 |
-
# unix_timestamp = int(json_dict["time"])
|
132 |
-
# local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
|
133 |
-
# local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
|
134 |
-
# time = []
|
135 |
-
# for i in range(len(json_dict['states'])):
|
136 |
-
# time.append(local_time)
|
137 |
-
# df_time = pd.DataFrame(time,columns=['time'])
|
138 |
-
# state_df = pd.DataFrame(json_dict["states"],columns=columns)
|
139 |
-
# state_df['time'] = df_time
|
140 |
-
# gdf = gpd.GeoDataFrame(
|
141 |
-
# state_df,
|
142 |
-
# geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
|
143 |
-
# crs={"init": "epsg:4326"}, # WGS84
|
144 |
-
# )
|
145 |
-
# # banner_image = Image.open('banner.png')
|
146 |
-
# # st.image(banner_image, width=300)
|
147 |
-
# st.title("Live Flight Tracker")
|
148 |
-
# st.subheader('Flight Details', divider='rainbow')
|
149 |
-
# st.write('Location: {0}'.format(loc))
|
150 |
-
# st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
|
151 |
-
# st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
|
152 |
-
# st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
|
153 |
-
# st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
|
154 |
-
# st.write('Plotting the flight: {}'.format(flight_info))
|
155 |
-
# st.subheader('Map Visualization', divider='rainbow')
|
156 |
-
# st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
|
157 |
-
# return gdf
|
158 |
-
|
159 |
-
# geo_df = get_traffic_gdf()
|
160 |
-
# if airport == 0:
|
161 |
-
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
|
162 |
-
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
|
163 |
-
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
|
164 |
-
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
|
165 |
-
# elif airport == 1:
|
166 |
-
# fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
|
167 |
-
# color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
|
168 |
-
# hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
|
169 |
-
# 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
|
170 |
-
# fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
|
171 |
-
# hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
|
172 |
-
# else: None
|
173 |
-
# fig.update_layout(mapbox_style="carto-darkmatter")
|
174 |
-
# fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
|
175 |
-
# # out = fig.show())
|
176 |
-
# out = st.plotly_chart(fig, theme=None)
|
177 |
-
# return out
|
178 |
-
# st.set_page_config(
|
179 |
-
# layout="wide"
|
180 |
-
# )
|
181 |
-
# image = Image.open('logo.png')
|
182 |
-
# add_selectbox = st.sidebar.image(
|
183 |
-
# image, width=150
|
184 |
-
# )
|
185 |
-
# add_selectbox = st.sidebar.subheader(
|
186 |
-
# "Configure Map",divider='rainbow'
|
187 |
-
# )
|
188 |
-
# with st.sidebar:
|
189 |
-
# Refresh = st.button('Update Map', key=1)
|
190 |
-
# on = st.toggle('View Airports')
|
191 |
-
# if on:
|
192 |
-
# air_port = 1
|
193 |
-
# st.write(':rainbow[Nice Work Buddy!]')
|
194 |
-
# st.write('Now Airports are Visible')
|
195 |
-
# else:
|
196 |
-
# air_port=0
|
197 |
-
# view = st.slider('Increase Flight Visibility',1,6,2)
|
198 |
-
# st.write("You Selected:", view)
|
199 |
-
# cou = st.text_input('Type Country Name', 'north america')
|
200 |
-
# st.write('The current Country name is', cou)
|
201 |
-
# time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
|
202 |
-
# st.write('The current Time Zone is', time)
|
203 |
-
# info = st.selectbox(
|
204 |
-
# 'Select Flight Information',
|
205 |
-
# ('baro_altitude',
|
206 |
-
# 'on_ground', 'velocity',
|
207 |
-
# 'geo_altitude'))
|
208 |
-
# st.write('Plotting the data of Flight:', info)
|
209 |
-
# clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
|
210 |
-
# if clr == "rainbow":
|
211 |
-
# st.write('The current color is', "****:rainbow[Rainbow]****")
|
212 |
-
# elif clr == 'ice':
|
213 |
-
# st.write('The current color is', "****:blue[Ice]****")
|
214 |
-
# elif clr == 'hot':
|
215 |
-
# st.write('The current color is', "****:red[Hot]****")
|
216 |
-
# else: None
|
217 |
-
# # with st.spinner('Wait!, We Requesting API Data...'):
|
218 |
-
# # try:
|
219 |
-
# flight_tracking(flight_view_level=view, country=cou,flight_info=info,
|
220 |
-
# local_time_zone=time, airport=air_port, color=clr)
|
221 |
-
# st.subheader('Ask your Questions!', divider='rainbow')
|
222 |
-
# st.write("Google's TAPAS base LLM model 🤖")
|
223 |
-
# geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
|
224 |
-
# question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
|
225 |
-
# result = query_flight_data(geo_df, question)
|
226 |
-
# st.markdown(result)
|
227 |
-
# # except TypeError:
|
228 |
-
# # st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
|
229 |
-
# # st.button('Re-run', type="primary")
|
230 |
-
# # st.snow()
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
# # import streamlit as st
|
235 |
-
# # from huggingface_hub import InferenceClient
|
236 |
-
# # import os
|
237 |
-
|
238 |
-
# # hf_token = os.getenv("HF_TOKEN")
|
239 |
-
# # # Set up the Hugging Face Inference Client
|
240 |
-
# # client = InferenceClient(
|
241 |
-
# # provider="together", # Replace with the correct provider if needed
|
242 |
-
# # api_key= hf_token # Replace with your Hugging Face API key
|
243 |
-
# # )
|
244 |
-
|
245 |
-
# # # Streamlit app title
|
246 |
-
# # st.title("🤖 Deepseek R1 Chatbot")
|
247 |
-
# # st.write("Chat with the Deepseek R1 model powered by Hugging Face Inference API.")
|
248 |
-
|
249 |
-
# # # Initialize session state to store chat history
|
250 |
-
# # if "messages" not in st.session_state:
|
251 |
-
# # st.session_state.messages = []
|
252 |
-
|
253 |
-
# # # Display chat history
|
254 |
-
# # for message in st.session_state.messages:
|
255 |
-
# # with st.chat_message(message["role"]):
|
256 |
-
# # st.markdown(message["content"])
|
257 |
-
|
258 |
-
# # # User input
|
259 |
-
# # if prompt := st.chat_input("What would you like to ask?"):
|
260 |
-
# # # Add user message to chat history
|
261 |
-
# # st.session_state.messages.append({"role": "user", "content": prompt})
|
262 |
-
# # with st.chat_message("user"):
|
263 |
-
# # st.markdown(prompt)
|
264 |
-
|
265 |
-
# # # Generate response from Deepseek R1 model
|
266 |
-
# # with st.spinner("Thinking..."):
|
267 |
-
# # try:
|
268 |
-
# # # Prepare the messages for the model
|
269 |
-
# # messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]
|
270 |
-
|
271 |
-
# # # Call the Hugging Face Inference API
|
272 |
-
# # completion = client.chat.completions.create(
|
273 |
-
# # model="deepseek-ai/DeepSeek-R1", # Replace with the correct model name
|
274 |
-
# # messages=messages,
|
275 |
-
# # max_tokens=500
|
276 |
-
# # )
|
277 |
-
|
278 |
-
# # # Extract the model's response
|
279 |
-
# # response = completion.choices[0].message.content
|
280 |
-
|
281 |
-
# # # Add model's response to chat history
|
282 |
-
# # st.session_state.messages.append({"role": "assistant", "content": response})
|
283 |
-
# # with st.chat_message("assistant"):
|
284 |
-
# # st.markdown(response)
|
285 |
-
|
286 |
-
# # except Exception as e:
|
287 |
-
# # st.error(f"An error occurred: {e}")
|
288 |
-
|
289 |
-
|
290 |
'''Copyright 2024 Ashok Kumar
|
291 |
|
292 |
Licensed under the Apache License, Version 2.0 (the "License");
|
@@ -383,15 +94,10 @@ def fetch_flight_data(lat_min, lat_max, lon_min, lon_max):
|
|
383 |
st.error(f"Unexpected error: {str(e)}")
|
384 |
return {'states': [], 'time': 0}
|
385 |
|
386 |
-
|
387 |
-
hf_token = os.getenv("HF_TOKEN")
|
388 |
-
if hf_token is None:
|
389 |
-
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
390 |
-
login(hf_token)
|
391 |
-
|
392 |
# Hugging Face model configuration
|
393 |
HF_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
394 |
-
|
|
|
395 |
|
396 |
def query_llm(prompt):
|
397 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
'''Copyright 2024 Ashok Kumar
|
2 |
|
3 |
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
94 |
st.error(f"Unexpected error: {str(e)}")
|
95 |
return {'states': [], 'time': 0}
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Hugging Face model configuration
|
98 |
HF_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
99 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
100 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
101 |
|
102 |
def query_llm(prompt):
|
103 |
try:
|