File size: 14,775 Bytes
3d1f22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ab5ef
3639373
 
 
bacf95c
3639373
bacf95c
 
 
 
 
3639373
3d1f22b
08479a3
d1ab5ef
3639373
 
 
 
 
d1ab5ef
 
 
3639373
 
 
 
 
 
 
 
 
 
 
d1ab5ef
3639373
 
 
 
 
d1ab5ef
3639373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ab5ef
3639373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# '''Copyright 2024 Ashok Kumar

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.'''

# import os
# import requests
# import json
# import pandas as pd
# import numpy as np
# import requests
# import geopandas as gpd
# import contextily as ctx
# import tzlocal
# import pytz 
# from PIL import Image
# from datetime import datetime
# import matplotlib.pyplot as plt
# from geopy.exc import GeocoderTimedOut
# from geopy.geocoders import Nominatim
# import warnings
# warnings.filterwarnings('ignore')
# from plotly.graph_objs import Marker
# import plotly.express as px
# import streamlit as st
# from data import flight_data
# from huggingface_hub import InferenceApi, login, InferenceClient


# hf_token = os.getenv("HF_TOKEN")
# if hf_token is None:
#     raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
# login(hf_token)


# API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
# headers = {"Authorization": f"Bearer {hf_token}"}

# def query(payload):
#     response = requests.post(API_URL, headers=headers, json=payload)
#     return response.json()

# def query_flight_data(geo_df, question):


#     table_data = {
#         "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
#         "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
#         "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
#         "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(),  # Assuming on_ground is boolean or categorical
#         "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
#         "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
#         "spi": geo_df["spi"].astype(str).iloc[:100].tolist(),  # Assuming spi is boolean or categorical
#         "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(),  # Assuming position_source is categorical
#         "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
#         "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
#     }


#     # Construct the payload
#     payload = {
#         "inputs": {
#             "query": question,
#             "table": table_data,
#         }
#     }

#     # Get the model response
#     response = query(payload)

#     # Check if 'answer' is in response and return it as a sentence
#     if 'answer' in response:
#         answer = response['answer']
#         return f"The answer to your question '{question}': :orange[{answer}]"
#     else:
#         return "The model could not find an answer to your question."


# def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
#     geolocator = Nominatim(user_agent="flight_tracker")
#     loc = geolocator.geocode(country)
#     loc_box = loc[1]
#     extend_left =+12*flight_view_level
#     extend_right =+10*flight_view_level
#     extend_top =+10*flight_view_level
#     extend_bottom =+ 18*flight_view_level
#     lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
#     lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
    
#     tile_zoom = 8 # zoom of the map loaded by contextily
#     figsize = (15, 15)
#     columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
#             "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
#             "squawk","spi","position_source",]
#     data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
#     column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
#                     "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
#     airport_df = pd.read_csv(data_url, header=None, names=column_names)
#     airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
#     airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
#     airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
#                             (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
#                             (airport_country_loc['Longitude'] <= lon_max)]
#     def get_traffic_gdf():
#         url_data = (
#                 f"https://@opensky-network.org/api/states/all?"
#                 f"lamin={str(lat_min)}"
#                 f"&lomin={str(lon_min)}"
#                 f"&lamax={str(lat_max)}"
#                 f"&lomax={str(lon_max)}")
#         json_dict = requests.get(url_data).json()

#         unix_timestamp = int(json_dict["time"])
#         local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
#         local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
#         time = []
#         for i in range(len(json_dict['states'])):
#             time.append(local_time)
#         df_time = pd.DataFrame(time,columns=['time'])
#         state_df = pd.DataFrame(json_dict["states"],columns=columns)
#         state_df['time'] = df_time
#         gdf = gpd.GeoDataFrame(
#                 state_df,
#                 geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
#                 crs={"init": "epsg:4326"},  # WGS84
#             )
#         # banner_image = Image.open('banner.png')
#         # st.image(banner_image, width=300)
#         st.title("Live Flight Tracker")
#         st.subheader('Flight Details', divider='rainbow')
#         st.write('Location: {0}'.format(loc))
#         st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
#         st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
#         st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
#         st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
#         st.write('Plotting the flight: {}'.format(flight_info))
#         st.subheader('Map Visualization', divider='rainbow')
#         st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
#         return gdf

#     geo_df = get_traffic_gdf()
#     if airport == 0:
#         fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
#                             color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
#                             hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
#         'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
#     elif airport == 1:
#         fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
#                             color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
#                             hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
#         'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
#         fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
#                                         hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
#     else: None
#     fig.update_layout(mapbox_style="carto-darkmatter")
#     fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
#     # out = fig.show())
#     out = st.plotly_chart(fig, theme=None)
#     return out
# st.set_page_config(
#     layout="wide"
# )
# image = Image.open('logo.png')
# add_selectbox = st.sidebar.image(
#     image, width=150
# )
# add_selectbox = st.sidebar.subheader(
#     "Configure Map",divider='rainbow'
# )
# with st.sidebar:
#     Refresh = st.button('Update Map', key=1)
#     on = st.toggle('View Airports')
#     if on:
#         air_port = 1
#         st.write(':rainbow[Nice Work Buddy!]')
#         st.write('Now Airports are Visible')
#     else:
#         air_port=0
#     view = st.slider('Increase Flight Visibility',1,6,2)
#     st.write("You Selected:", view)
#     cou = st.text_input('Type Country Name', 'north america')
#     st.write('The current Country name is', cou)
#     time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
#     st.write('The current Time Zone is', time)
#     info = st.selectbox(
#     'Select Flight Information',
#     ('baro_altitude',
#         'on_ground', 'velocity',
#         'geo_altitude'))
#     st.write('Plotting the data of Flight:', info)
#     clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
#     if clr == "rainbow":
#         st.write('The current color is', "****:rainbow[Rainbow]****")
#     elif clr == 'ice':
#         st.write('The current color is', "****:blue[Ice]****")
#     elif clr == 'hot':
#         st.write('The current color is', "****:red[Hot]****")
#     else: None
# # with st.spinner('Wait!, We Requesting API Data...'):
# # try:
# flight_tracking(flight_view_level=view, country=cou,flight_info=info,
#             local_time_zone=time, airport=air_port, color=clr)
# st.subheader('Ask your Questions!', divider='rainbow')
# st.write("Google's TAPAS base LLM model 🤖")
# geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
# question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
# result = query_flight_data(geo_df, question)
# st.markdown(result)
# # except TypeError:
# #     st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
# #     st.button('Re-run', type="primary")
# # st.snow()
 
import streamlit as st
import requests
import os
from huggingface_hub import login

# Set up Hugging Face token
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
    raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
login(hf_token)

# Hugging Face Inference API URL for Deepseek model
API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/deepseek-r1"
headers = {"Authorization": f"Bearer {hf_token}"}

# Function to query the Deepseek model
def query_deepseek(payload):
    """
    Sends a query to the Deepseek model using Hugging Face Inference API.
    """
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Streamlit app configuration
st.set_page_config(page_title="Deepseek Chatbot", page_icon="🤖", layout="wide")

# Custom CSS for chatbot UI
st.markdown("""
    <style>
    .chat-message {
        padding: 10px;
        border-radius: 10px;
        margin: 5px 0;
        max-width: 70%;
    }
    .user-message {
        background-color: #0078D4;
        color: white;
        margin-left: auto;
        margin-right: 0;
    }
    .bot-message {
        background-color: #f1f1f1;
        color: black;
        margin-left: 0;
        margin-right: auto;
    }
    </style>
    """, unsafe_allow_html=True)

# Initialize session state for chat history
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

# Streamlit app title
st.title("🤖 Deepseek Chatbot")
st.write("Welcome to the Deepseek Chatbot! Ask me anything, and I'll do my best to help.")

# Chat input
user_input = st.text_input("You:", placeholder="Type your message here...", key="user_input")

# Send button
if st.button("Send"):
    if user_input.strip() != "":
        # Add user message to chat history
        st.session_state.chat_history.append({"role": "user", "content": user_input})

        # Prepare payload for Deepseek model
        payload = {
            "inputs": {
                "question": user_input,
                "context": "",  # Add context if needed
            }
        }

        # Query the Deepseek model
        with st.spinner("Thinking..."):
            try:
                response = query_deepseek(payload)
                bot_response = response.get("answer", "Sorry, I couldn't understand that.")
            except Exception as e:
                bot_response = f"An error occurred: {str(e)}"

        # Add bot response to chat history
        st.session_state.chat_history.append({"role": "bot", "content": bot_response})

# Display chat history
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f'<div class="chat-message user-message">{message["content"]}</div>', unsafe_allow_html=True)
    elif message["role"] == "bot":
        st.markdown(f'<div class="chat-message bot-message">{message["content"]}</div>', unsafe_allow_html=True)

# Clear chat history button
if st.button("Clear Chat"):
    st.session_state.chat_history = []
    st.experimental_rerun()