import faiss import numpy as np from embeddings import generate_embeddings dimension = 384 index = faiss.IndexFlatL2(dimension) resume_db = {} def store_resume_embedding(filename, vector, text): global resume_db index.add(np.array([vector])) resume_db[len(resume_db)] = {"filename": filename, "text": text} def search_similar_resumes(job_description): job_vector = generate_embeddings(job_description) D, I = index.search(np.array([job_vector]), k=3) return [resume_db[i]["text"] for i in I[0] if i in resume_db]