Update agent.py
Browse files
agent.py
CHANGED
@@ -1,243 +1,147 @@
|
|
1 |
-
from
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
import
|
9 |
-
from
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
#
|
27 |
-
#
|
28 |
-
|
29 |
-
#
|
30 |
-
# url = 'https://agents-course-unit4-scoring.hf.space/questions'
|
31 |
-
# headers = {'accept': 'application/json'}
|
32 |
-
# response = requests.get(url, headers=headers)
|
33 |
-
# for i in response.json():
|
34 |
-
# if i['file_name'] != '':
|
35 |
-
# url_file = f"https://agents-course-unit4-scoring.hf.space/files/{i['task_id']}"
|
36 |
-
# question = i['question']
|
37 |
-
# prompt = f"{question} and the file is {url_file}, give the final answer only"
|
38 |
-
# else:
|
39 |
-
# question = i['question']
|
40 |
-
# prompt = f"{question} give the final answer only"
|
41 |
-
# existing_responses = ctx.session.state.get("user:responses", [])
|
42 |
-
# existing_responses.append(prompt)
|
43 |
-
# ctx.session_state["user:responses"] = existing_responses
|
44 |
-
|
45 |
-
# # Optionally, yield a single event to indicate completion or provide some output
|
46 |
-
# yield Event(author=self.name, content=types.Content(parts=[types.Part(text=f"Fetched {len(questions_data)} questions."))])
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
def answer_questions():
|
51 |
-
"""Fetch questions from the GAIA API and return them in a structured format"""
|
52 |
-
url = 'https://agents-course-unit4-scoring.hf.space/questions'
|
53 |
-
headers = {'accept': 'application/json'}
|
54 |
-
response = requests.get(url, headers=headers)
|
55 |
-
|
56 |
-
if response.status_code != 200:
|
57 |
-
return f"Error fetching questions: {response.status_code}"
|
58 |
-
|
59 |
-
questions_data = response.json()
|
60 |
-
return questions_data
|
61 |
-
#responses_api = responses_api(name= 'responses_api_1')
|
62 |
-
from typing import Dict, Any
|
63 |
-
def submit_questions(answers: list[str]) -> Dict[str, Any]:
|
64 |
-
url = 'https://agents-course-unit4-scoring.hf.space/submit'
|
65 |
-
payload = {
|
66 |
-
"username": "ashishja",
|
67 |
-
"agent_code": "https://huggingface.co/spaces/ashishja/Agents_Course_Final_Assignment_Ashish/tree/main",
|
68 |
-
"answers": answers}
|
69 |
-
headers = {'accept': 'application/json', "Content-Type": "application/json"}
|
70 |
-
response = requests.post(url, headers=headers, json =payload)
|
71 |
-
import json
|
72 |
-
print(json.dumps(payload, indent=2))
|
73 |
-
if response.status_code == 200:
|
74 |
-
return response.json()
|
75 |
-
else:
|
76 |
-
response.raise_for_status()
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
responses_api = FunctionTool(func= answer_questions)
|
82 |
-
submit_api = FunctionTool(func=submit_questions)
|
83 |
-
|
84 |
-
# class QuestionAnswerer(LlmAgent):
|
85 |
-
# async def _run_async_impl(self, ctx: InvocationContext) -> AsyncGenerator[Event, None]:
|
86 |
-
# questions_to_answer = ctx.session_service.get('fetched_questions', [])
|
87 |
-
# for q in questions_to_answer:
|
88 |
-
# answer = await self._llm(messages=[types.ChatMessage(role="user", parts=[types.Part(text=q)])])
|
89 |
-
# yield Event(author=self.name, content=answer.content)
|
90 |
-
|
91 |
-
# qa = QuestionAnswerer(name = 'qa_1', model="gemini-2.0-flash", description="Question Answerer")
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
APP_NAME="weather_sentiment_agent"
|
101 |
-
USER_ID="user1234"
|
102 |
-
SESSION_ID="1234"
|
103 |
-
|
104 |
-
|
105 |
-
code_agent = LlmAgent(
|
106 |
-
name='codegaiaAgent',
|
107 |
-
model="gemini-2.5-pro-preview-05-06",
|
108 |
-
description=(
|
109 |
-
"You are a smart agent that can write and execute code and answer any questions provided access the given files and answer"
|
110 |
-
),
|
111 |
-
instruction = (
|
112 |
-
"if the question contains a file with .py ,Get the code file and depending on the question and the file provided, execute the code and provide the final answer. "
|
113 |
-
"If the question contains a spreadsheet file like .xlsx and .csv among others, get the file and depending on the question and the file provided, execute the code and provide the final answer. "
|
114 |
-
"use code like import pandas as pd , file = pd.read_csv('file.csv') and then use the file to answer the question. "
|
115 |
-
"if the question contains a file with .txt ,Get the code file and depending on the question and the file provided, execute the code and provide the final answer. "
|
116 |
-
"if the question contains a file with .json ,Get the code file and depending on the question and the file provided, execute the code and provide the final answer. "
|
117 |
-
"If you are writing code or if you get a code file, use the code execution tool to run the code and provide the final answer. "
|
118 |
-
)
|
119 |
-
|
120 |
-
,
|
121 |
-
# tools=[built_in_code_execution],
|
122 |
-
# Add the responses_api agent as a tool
|
123 |
-
#sub_agents=[responses_api]
|
124 |
-
)
|
125 |
-
|
126 |
-
|
127 |
-
search_agent = LlmAgent(
|
128 |
-
name='searchgaiaAgent',
|
129 |
-
model="gemini-2.5-pro-preview-05-06",
|
130 |
-
description=(
|
131 |
-
"You are a smart agent that can search the web and answer any questions provided access the given files and answer"
|
132 |
-
),
|
133 |
-
instruction = (
|
134 |
-
"Get the url associated perform a search and consolidate the information provided and answer the provided question "
|
135 |
-
)
|
136 |
-
|
137 |
-
,
|
138 |
-
tools=[google_search],
|
139 |
-
# Add the responses_api agent as a tool
|
140 |
-
#sub_agents=[responses_api]
|
141 |
-
)
|
142 |
-
|
143 |
-
image_agent = LlmAgent(
|
144 |
-
name='imagegaiaAgent',
|
145 |
-
model="gemini-2.5-pro-preview-05-06",
|
146 |
-
description=(
|
147 |
-
"You are a smart agent that can when given a image file and answer any questions related to it"
|
148 |
-
),
|
149 |
-
instruction = (
|
150 |
-
"Get the image file from the link associated in the prompt use Gemini to watch the video and answer the provided question ")
|
151 |
-
|
152 |
-
,
|
153 |
-
# tools=[google_search],
|
154 |
-
# Add the responses_api agent as a tool
|
155 |
-
#sub_agents=[responses_api]
|
156 |
-
)
|
157 |
-
|
158 |
-
|
159 |
-
youtube_agent = LlmAgent(
|
160 |
-
name='youtubegaiaAgent',
|
161 |
-
model="gemini-2.5-pro-preview-05-06",
|
162 |
-
description=(
|
163 |
-
"You are a smart agent that can when given a youtube link watch it and answer any questions related to it"
|
164 |
-
),
|
165 |
-
instruction = (
|
166 |
-
"Get the youtube link associated use Gemini to watch the video and answer the provided question ")
|
167 |
-
|
168 |
-
,
|
169 |
-
# tools=[google_search],
|
170 |
-
# Add the responses_api agent as a tool
|
171 |
-
#sub_agents=[responses_api]
|
172 |
-
)
|
173 |
-
|
174 |
-
root_agent = LlmAgent(
|
175 |
-
name='basegaiaAgent',
|
176 |
-
model="gemini-2.5-pro-preview-05-06",
|
177 |
-
description=(
|
178 |
-
"You are a smart agent that can answer any questions provided access the given files and answer"
|
179 |
-
),
|
180 |
-
instruction = (
|
181 |
-
"You are a helpful agent. When the user asks to get the questions or makes a similar request, "
|
182 |
-
"invoke your tool 'responses_api' to retrieve the questions data. "
|
183 |
-
"The questions data will be a list of dictionaries, each containing 'task_id', 'question', and 'file_name' fields. "
|
184 |
-
"For each question in the data: "
|
185 |
-
"1. If file_name is not empty, the file can be accessed at https://agents-course-unit4-scoring.hf.space/files/[TASK_ID] "
|
186 |
-
"2. Use appropriate sub-agents based on question type (code_agent for coding, search_agent for web search, etc.) "
|
187 |
-
"3. Provide a concise, direct answer for each question "
|
188 |
-
"4. Return a dictionary with keys 'task_id' and 'submitted_answer' for each answer "
|
189 |
-
"5. Collect all dictionaries in a list and pass to 'submit_api' tool to submit the answers. "
|
190 |
-
"Always provide direct, factual answers without prefixes like 'The answer is:' or 'Final answer:'"
|
191 |
-
)
|
192 |
-
|
193 |
-
,
|
194 |
-
tools=[responses_api,submit_api,agent_tool.AgentTool(agent = code_agent),\
|
195 |
-
agent_tool.AgentTool(agent = search_agent), agent_tool.AgentTool(youtube_agent), agent_tool.AgentTool(image_agent)],
|
196 |
-
# Add the responses_api agent as a tool
|
197 |
-
#sub_agents=[responses_api]
|
198 |
-
)
|
199 |
-
|
200 |
-
# root_agent = LlmAgent(
|
201 |
-
# name='gaiaAgent',
|
202 |
-
# model="gemini-2.5-pro-preview-05-06",
|
203 |
-
# description=(
|
204 |
-
# "You are a smart agent that can answer any questions provided access the given files and answer"
|
205 |
-
# ),
|
206 |
-
# instruction = (
|
207 |
-
# "You are a helpful agent. When the user asks to get the questions or makes a similar request, "
|
208 |
-
# "invoke base agent. "
|
209 |
-
# "Once you the answers check if are in correct format. "
|
210 |
-
# #"Collect all such dictionaries in a list (do not include any backslashes), and pass this list to the 'submit_api' tool to submit the answers."
|
211 |
-
# )
|
212 |
-
|
213 |
-
# ,
|
214 |
-
# #tools=[submit_api],
|
215 |
-
# # Add the responses_api agent as a tool
|
216 |
-
# sub_agents=[base_agent]
|
217 |
-
# )
|
218 |
-
|
219 |
-
session_service = InMemorySessionService()
|
220 |
-
|
221 |
-
# Create the default session synchronously (create_session is not async)
|
222 |
-
try:
|
223 |
-
session = session_service.create_session(
|
224 |
-
app_name=APP_NAME,
|
225 |
-
user_id=USER_ID,
|
226 |
-
session_id=SESSION_ID
|
227 |
)
|
228 |
-
print(f"✅ Default session created: {SESSION_ID}")
|
229 |
-
except Exception as e:
|
230 |
-
print(f"⚠️ Error creating default session: {e}")
|
231 |
-
session = None
|
232 |
-
|
233 |
-
runner = Runner(agent=root_agent, app_name=APP_NAME, session_service=session_service)
|
234 |
-
# # def send_query_to_agent(root_agent, query, session):
|
235 |
-
# # session = session
|
236 |
-
# # content = types.Content(role='user', parts=[types.Part(text=query)])
|
237 |
|
238 |
-
# # async def main():
|
239 |
-
# # await process_questions_and_answer()
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypedDict, Annotated, Optional
|
2 |
+
from langgraph.graph.message import add_messages
|
3 |
+
from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage, ToolMessage
|
4 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
5 |
+
from langgraph.graph import START, StateGraph, END
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from pydantic import SecretStr
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from tools import download_file_from_url, basic_web_search, extract_url_content, wikipedia_reader, transcribe_audio_file, question_youtube_video
|
11 |
+
|
12 |
+
# Load environment variables from .env file
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
16 |
+
MAIN_LLM_MODEL = os.getenv("MAIN_LLM_MODEL", "google/gemini-2.0-flash-lite-001")
|
17 |
+
|
18 |
+
# Generate the chat interface, including the tools
|
19 |
+
if not OPENROUTER_API_KEY:
|
20 |
+
raise ValueError("OPENROUTER_API_KEY is not set. Please ensure it is defined in your .env file or environment variables.")
|
21 |
+
|
22 |
+
|
23 |
+
def create_agent_graph():
|
24 |
+
|
25 |
+
main_llm = ChatOpenAI(
|
26 |
+
model=MAIN_LLM_MODEL, # e.g., "mistralai/mistral-7b-instruct"
|
27 |
+
api_key=SecretStr(OPENROUTER_API_KEY), # Your OpenRouter API key
|
28 |
+
base_url="https://openrouter.ai/api/v1", # Standard OpenRouter API base
|
29 |
+
verbose=True # Optional: for debugging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
32 |
|
33 |
+
tools = [download_file_from_url, basic_web_search, extract_url_content, wikipedia_reader, transcribe_audio_file, question_youtube_video] # Ensure these tools are defined
|
34 |
+
chat_with_tools = main_llm.bind_tools(tools)
|
35 |
+
|
36 |
+
class AgentState(TypedDict):
|
37 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
38 |
+
file_url: Optional[str | None]
|
39 |
+
file_ext: Optional[str | None]
|
40 |
+
local_file_path: Optional[str | None]
|
41 |
+
final_answer: Optional[str | None]
|
42 |
+
|
43 |
+
def assistant(state: AgentState):
|
44 |
+
return {
|
45 |
+
"messages": [chat_with_tools.invoke(state["messages"])],
|
46 |
+
"file_url": state.get("file_url", None),
|
47 |
+
"file_ext": state.get("file_ext", None),
|
48 |
+
"local_file_path": state.get("local_file_path", None),
|
49 |
+
"final_answer": state.get("final_answer", None)
|
50 |
+
}
|
51 |
+
|
52 |
+
def file_path_updater_node(state: AgentState):
|
53 |
+
download_tool_response = state["messages"][-1].content
|
54 |
+
file_path = download_tool_response.split("Local File Path: ")[-1].strip()
|
55 |
+
return {
|
56 |
+
"local_file_path": file_path
|
57 |
+
}
|
58 |
+
|
59 |
+
def file_path_condition(state: AgentState) -> str:
|
60 |
+
if state["messages"] and isinstance(state["messages"][-1], ToolMessage):
|
61 |
+
tool_response = state["messages"][-1]
|
62 |
+
if tool_response.name == "download_file_from_url":
|
63 |
+
return "update_file_path" # Route to file path updater if a file was downloaded
|
64 |
+
return "assistant" # Otherwise, continue with the assistant node
|
65 |
+
|
66 |
+
def format_final_answer_node(state: AgentState) -> AgentState:
|
67 |
+
"""
|
68 |
+
Formats the final answer based on the state.
|
69 |
+
This node is reached when the assistant has completed its task.
|
70 |
+
"""
|
71 |
+
final_answer = state["messages"][-1].content if state["messages"] else None
|
72 |
+
if final_answer:
|
73 |
+
state["final_answer"] = final_answer.split("FINAL ANSWER:")[-1].strip() #if FINAL_ANSWER isn't present we grab the whole string
|
74 |
+
return state
|
75 |
+
|
76 |
+
|
77 |
+
# The graph
|
78 |
+
builder = StateGraph(AgentState)
|
79 |
+
|
80 |
+
builder.add_node("assistant", assistant)
|
81 |
+
builder.add_edge(START, "assistant")
|
82 |
+
builder.add_node("tools", ToolNode(tools))
|
83 |
+
builder.add_node("file_path_updater_node", file_path_updater_node)
|
84 |
+
builder.add_node("format_final_answer_node", format_final_answer_node)
|
85 |
+
|
86 |
+
builder.add_conditional_edges(
|
87 |
+
"assistant",
|
88 |
+
tools_condition,
|
89 |
+
{
|
90 |
+
"tools": "tools",
|
91 |
+
"__end__": "format_final_answer_node" # This is the end node for the assistant
|
92 |
+
}
|
93 |
+
)
|
94 |
+
builder.add_conditional_edges(
|
95 |
+
"tools",
|
96 |
+
file_path_condition,
|
97 |
+
{
|
98 |
+
"update_file_path": "file_path_updater_node",
|
99 |
+
"assistant": "assistant"
|
100 |
+
}
|
101 |
+
)
|
102 |
+
|
103 |
+
builder.add_edge("file_path_updater_node", "assistant")
|
104 |
+
builder.add_edge("format_final_answer_node", END)
|
105 |
+
graph = builder.compile()
|
106 |
+
return graph
|
107 |
+
|
108 |
+
class BasicAgent:
|
109 |
+
"""
|
110 |
+
A basic agent that can answer questions and download files.
|
111 |
+
Requires a system message be defined in 'system_prompt.txt'.
|
112 |
+
"""
|
113 |
+
def __init__(self, graph=None):
|
114 |
+
|
115 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
116 |
+
self.system_message = SystemMessage(content=f.read())
|
117 |
+
|
118 |
+
if graph is None:
|
119 |
+
self.graph = create_agent_graph()
|
120 |
+
else:
|
121 |
+
self.graph = graph
|
122 |
+
|
123 |
+
def __call__(self, question: str, file_url: Optional[str] = None, file_ext: Optional[str] = None) -> str:
|
124 |
+
"""
|
125 |
+
Call the agent with a question and optional file URL and extension.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
question (str): The user's question.
|
129 |
+
file_url (Optional[str]): The URL of the file to download.
|
130 |
+
file_ext (Optional[str]): The file extension for the downloaded file.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
str: The agent's response.
|
134 |
+
"""
|
135 |
+
if file_url and file_ext:
|
136 |
+
question += f"\nREFERENCE FILE MUST BE RETRIEVED\nFile URL: {file_url}, File Extension: {file_ext}\nUSE A TOOL TO DOWNLOAD THIS FILE."
|
137 |
+
state = {
|
138 |
+
"messages": [self.system_message, HumanMessage(content=question)],
|
139 |
+
"file_url": file_url,
|
140 |
+
"file_ext": file_ext,
|
141 |
+
"local_file_path": None,
|
142 |
+
"final_answer": None
|
143 |
+
}
|
144 |
+
response = self.graph.invoke(state)
|
145 |
+
for m in response["messages"]:
|
146 |
+
m.pretty_print()
|
147 |
+
return response["final_answer"] if response["final_answer"] else "No final answer generated."
|