updated agent code
Browse files
app.py
CHANGED
@@ -1,196 +1,245 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
import requests
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
-
print("User not logged in.")
|
35 |
-
return "Please Login to Hugging Face with the button.", None
|
36 |
-
|
37 |
-
api_url = DEFAULT_API_URL
|
38 |
-
questions_url = f"{api_url}/questions"
|
39 |
-
submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
-
try:
|
43 |
-
agent = BasicAgent()
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
-
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
-
|
51 |
-
# 2. Fetch Questions
|
52 |
-
print(f"Fetching questions from: {questions_url}")
|
53 |
-
try:
|
54 |
-
response = requests.get(questions_url, timeout=15)
|
55 |
response.raise_for_status()
|
56 |
-
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
# 3. Run your Agent
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
77 |
-
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
-
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
-
except Exception as e:
|
87 |
-
print(f"Error running agent on task {task_id}: {e}")
|
88 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
-
|
90 |
-
if not answers_payload:
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
-
|
94 |
-
# 4. Prepare Submission
|
95 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
-
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
-
try:
|
102 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
-
response.raise_for_status()
|
104 |
-
result_data = response.json()
|
105 |
-
final_status = (
|
106 |
-
f"Submission Successful!\n"
|
107 |
-
f"User: {result_data.get('username')}\n"
|
108 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
-
)
|
112 |
-
print("Submission successful.")
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except Exception as e:
|
137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
-
|
142 |
-
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
-
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
-
gr.Markdown(
|
147 |
-
"""
|
148 |
-
**Instructions:**
|
149 |
-
|
150 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
"""
|
159 |
-
)
|
160 |
-
|
161 |
-
gr.LoginButton()
|
162 |
-
|
163 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
-
|
174 |
-
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from zoneinfo import ZoneInfo
|
2 |
+
from google.adk.agents import Agent,BaseAgent,LlmAgent
|
3 |
+
from google.adk.tools import google_search
|
4 |
+
from google.adk.runners import Runner
|
5 |
+
from google.adk.sessions import InMemorySessionService
|
6 |
+
from google.genai import types
|
7 |
+
import google.genai.types as types
|
8 |
import requests
|
9 |
+
from google.adk.events import Event, EventActions
|
10 |
+
from google.adk.agents.invocation_context import InvocationContext
|
11 |
+
from typing import AsyncGenerator
|
12 |
+
from google.genai import types as genai_types
|
13 |
+
from google.adk.tools import ToolContext, FunctionTool
|
14 |
+
import logging
|
15 |
+
from google.adk.tools import built_in_code_execution
|
16 |
+
from google.adk.tools import agent_tool
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
logging.basicConfig(level=logging.ERROR)
|
26 |
+
#from google.adk.tools import agent_tool
|
27 |
+
url = 'https://agents-course-unit4-scoring.hf.space/questions'
|
28 |
+
headers = {'accept': 'application/json'}
|
29 |
+
response = requests.get(url, headers=headers)
|
30 |
+
|
31 |
+
# class responses_api(BaseAgent):
|
32 |
+
# async def _run_async_impl(self, ctx: InvocationContext)-> AsyncGenerator[Event, None]:
|
33 |
+
# # This method is called when the agent is run
|
34 |
+
# # You can implement your logic here
|
35 |
+
# # For example, you can call an external API or perform some calculations
|
36 |
+
# # and return the result
|
37 |
+
# url = 'https://agents-course-unit4-scoring.hf.space/questions'
|
38 |
+
# headers = {'accept': 'application/json'}
|
39 |
+
# response = requests.get(url, headers=headers)
|
40 |
+
# for i in response.json():
|
41 |
+
# if i['file_name'] != '':
|
42 |
+
# url_file = f"https://agents-course-unit4-scoring.hf.space/files/{i['task_id']}"
|
43 |
+
# question = i['question']
|
44 |
+
# prompt = f"{question} and the file is {url_file}, give the final answer only"
|
45 |
+
# else:
|
46 |
+
# question = i['question']
|
47 |
+
# prompt = f"{question} give the final answer only"
|
48 |
+
# existing_responses = ctx.session.state.get("user:responses", [])
|
49 |
+
# existing_responses.append(prompt)
|
50 |
+
# ctx.session_state["user:responses"] = existing_responses
|
51 |
+
|
52 |
+
# # Optionally, yield a single event to indicate completion or provide some output
|
53 |
+
# yield Event(author=self.name, content=types.Content(parts=[types.Part(text=f"Fetched {len(questions_data)} questions."))])
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def answer_questions():
|
58 |
+
url = 'https://agents-course-unit4-scoring.hf.space/questions'
|
59 |
+
headers = {'accept': 'application/json'}
|
60 |
+
response = requests.get(url, headers=headers)
|
61 |
+
prompts = []
|
62 |
+
for i in response.json():
|
63 |
+
task_id = i['task_id']
|
64 |
+
if i['file_name'] != '':
|
65 |
+
url_file = f"https://agents-course-unit4-scoring.hf.space/files/{i['task_id']}"
|
66 |
+
question = i['question']
|
67 |
+
prompt = f"{task_id}:{question} and the file is {url_file}, give the final answer only"
|
68 |
+
else:
|
69 |
+
question = i['question']
|
70 |
+
prompt = f"{task_id}:{question} give the final answer only"
|
71 |
+
prompts.append(prompt)
|
72 |
+
return prompts
|
73 |
+
#responses_api = responses_api(name= 'responses_api_1')
|
74 |
+
from typing import Dict, Any
|
75 |
+
def submit_questions(answers: list[str]) -> Dict[str, Any]:
|
76 |
+
url = 'https://agents-course-unit4-scoring.hf.space/submit'
|
77 |
+
payload = {
|
78 |
+
"username": "ashishja",
|
79 |
+
"agent_code": "your_agent_code",
|
80 |
+
"answers": answers}
|
81 |
+
headers = {'accept': 'application/json', "Content-Type": "application/json"}
|
82 |
+
response = requests.post(url, headers=headers, json =payload)
|
83 |
+
import json
|
84 |
+
print(json.dumps(payload, indent=2))
|
85 |
+
if response.status_code == 200:
|
86 |
+
return response.json()
|
87 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
response.raise_for_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
91 |
|
92 |
+
|
93 |
+
responses_api = FunctionTool(func= answer_questions)
|
94 |
+
submit_api = FunctionTool(func=submit_questions)
|
95 |
+
|
96 |
+
# class QuestionAnswerer(LlmAgent):
|
97 |
+
# async def _run_async_impl(self, ctx: InvocationContext) -> AsyncGenerator[Event, None]:
|
98 |
+
# questions_to_answer = ctx.session_service.get('fetched_questions', [])
|
99 |
+
# for q in questions_to_answer:
|
100 |
+
# answer = await self._llm(messages=[types.ChatMessage(role="user", parts=[types.Part(text=q)])])
|
101 |
+
# yield Event(author=self.name, content=answer.content)
|
102 |
+
|
103 |
+
# qa = QuestionAnswerer(name = 'qa_1', model="gemini-2.0-flash", description="Question Answerer")
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
APP_NAME="weather_sentiment_agent"
|
113 |
+
USER_ID="user1234"
|
114 |
+
SESSION_ID="1234"
|
115 |
+
|
116 |
+
|
117 |
+
code_agent = LlmAgent(
|
118 |
+
name='codegaiaAgent',
|
119 |
+
model="gemini-2.5-pro-preview-05-06",
|
120 |
+
description=(
|
121 |
+
"You are a smart agent that can write and execute code and answer any questions provided access the given files and answer"
|
122 |
+
),
|
123 |
+
instruction = (
|
124 |
+
"if the question contains a file with .py ,Get the code file and depending on the question and the file provided, execute the code and provide the final answer. "
|
125 |
+
"If the question contains a spreadsheet file like .xlsx and .csv among others, get the file and depending on the question and the file provided, execute the code and provide the final answer. "
|
126 |
+
"use code like import pandas as pd , file = pd.read_csv('file.csv') and then use the file to answer the question. "
|
127 |
+
"if the question contains a file with .txt ,Get the code file and depending on the question and the file provided, execute the code and provide the final answer. "
|
128 |
+
"if the question contains a file with .json ,Get the code file and depending on the question and the file provided, execute the code and provide the final answer. "
|
129 |
+
"If you are writing code or if you get a code file, use the code execution tool to run the code and provide the final answer. "
|
130 |
+
)
|
131 |
+
|
132 |
+
,
|
133 |
+
tools=[built_in_code_execution],
|
134 |
+
# Add the responses_api agent as a tool
|
135 |
+
#sub_agents=[responses_api]
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
search_agent = LlmAgent(
|
140 |
+
name='searchgaiaAgent',
|
141 |
+
model="gemini-2.5-pro-preview-05-06",
|
142 |
+
description=(
|
143 |
+
"You are a smart agent that can search the web and answer any questions provided access the given files and answer"
|
144 |
+
),
|
145 |
+
instruction = (
|
146 |
+
"Get the url associated perform a search and consolidate the information provided and answer the provided question "
|
147 |
+
)
|
148 |
+
|
149 |
+
,
|
150 |
+
tools=[google_search],
|
151 |
+
# Add the responses_api agent as a tool
|
152 |
+
#sub_agents=[responses_api]
|
153 |
+
)
|
154 |
+
|
155 |
+
image_agent = LlmAgent(
|
156 |
+
name='imagegaiaAgent',
|
157 |
+
model="gemini-2.5-pro-preview-05-06",
|
158 |
+
description=(
|
159 |
+
"You are a smart agent that can when given a image file and answer any questions related to it"
|
160 |
+
),
|
161 |
+
instruction = (
|
162 |
+
"Get the image file from the link associated in the prompt use Gemini to watch the video and answer the provided question ")
|
163 |
+
|
164 |
+
,
|
165 |
+
# tools=[google_search],
|
166 |
+
# Add the responses_api agent as a tool
|
167 |
+
#sub_agents=[responses_api]
|
168 |
+
)
|
169 |
+
|
170 |
+
|
171 |
+
youtube_agent = LlmAgent(
|
172 |
+
name='youtubegaiaAgent',
|
173 |
+
model="gemini-2.5-pro-preview-05-06",
|
174 |
+
description=(
|
175 |
+
"You are a smart agent that can when given a youtube link watch it and answer any questions related to it"
|
176 |
+
),
|
177 |
+
instruction = (
|
178 |
+
"Get the youtube link associated use Gemini to watch the video and answer the provided question ")
|
179 |
+
|
180 |
+
,
|
181 |
+
# tools=[google_search],
|
182 |
+
# Add the responses_api agent as a tool
|
183 |
+
#sub_agents=[responses_api]
|
184 |
+
)
|
185 |
+
|
186 |
+
root_agent = LlmAgent(
|
187 |
+
name='basegaiaAgent',
|
188 |
+
model="gemini-2.5-pro-preview-05-06",
|
189 |
+
description=(
|
190 |
+
"You are a smart agent that can answer any questions provided access the given files and answer"
|
191 |
+
),
|
192 |
+
instruction = (
|
193 |
+
"You are a helpful agent. When the user asks to get the questions or makes a similar request, "
|
194 |
+
"invoke your tool 'responses_api' to retrieve the questions. "
|
195 |
+
"Once you receive the list of questions, loop over each question and provide a concise answer for each based on the question and any provided file. "
|
196 |
+
"For every answer, return a dictionary with the keys task_id and submitted_answer, for example: "
|
197 |
+
"{'task_id': 'the-task-id', 'submitted_answer': 'your answer'}. "
|
198 |
+
"Collect all such dictionaries in a list (do not include any backslashes), and pass this list to the 'submit_api' tool to submit the answers."
|
199 |
+
)
|
200 |
+
|
201 |
+
,
|
202 |
+
tools=[responses_api,submit_api,agent_tool.AgentTool(agent = code_agent),\
|
203 |
+
agent_tool.AgentTool(agent = search_agent), agent_tool.AgentTool(youtube_agent), agent_tool.AgentTool(image_agent)],
|
204 |
+
# Add the responses_api agent as a tool
|
205 |
+
#sub_agents=[responses_api]
|
206 |
+
)
|
207 |
+
|
208 |
+
# root_agent = LlmAgent(
|
209 |
+
# name='gaiaAgent',
|
210 |
+
# model="gemini-2.5-pro-preview-05-06",
|
211 |
+
# description=(
|
212 |
+
# "You are a smart agent that can answer any questions provided access the given files and answer"
|
213 |
+
# ),
|
214 |
+
# instruction = (
|
215 |
+
# "You are a helpful agent. When the user asks to get the questions or makes a similar request, "
|
216 |
+
# "invoke base agent. "
|
217 |
+
# "Once you the answers check if are in correct format. "
|
218 |
+
# #"Collect all such dictionaries in a list (do not include any backslashes), and pass this list to the 'submit_api' tool to submit the answers."
|
219 |
+
# )
|
220 |
+
|
221 |
+
# ,
|
222 |
+
# #tools=[submit_api],
|
223 |
+
# # Add the responses_api agent as a tool
|
224 |
+
# sub_agents=[base_agent]
|
225 |
+
# )
|
226 |
+
|
227 |
+
session_service = InMemorySessionService()
|
228 |
+
session = session_service.create_session(app_name=APP_NAME, \
|
229 |
+
user_id=USER_ID,\
|
230 |
+
session_id=SESSION_ID)
|
231 |
+
|
232 |
+
runner = Runner(agent=root_agent, app_name=APP_NAME, session_service=session_service)
|
233 |
+
# # def send_query_to_agent(root_agent, query, session):
|
234 |
+
# # session = session
|
235 |
+
# # content = types.Content(role='user', parts=[types.Part(text=query)])
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
# # async def main():
|
241 |
+
# # await process_questions_and_answer()
|
242 |
+
|
243 |
+
# # if __name__ == "__main__":
|
244 |
+
# # import asyncio
|
245 |
+
# # asyncio.run(main())
|